Top-Down Strategy Enabling Elastic Wood Nanocarbon Sponges with Wrinkled Multilayer Structure and High Compressive Strength for High-Performance Compressible Supercapacitors.
{"title":"Top-Down Strategy Enabling Elastic Wood Nanocarbon Sponges with Wrinkled Multilayer Structure and High Compressive Strength for High-Performance Compressible Supercapacitors.","authors":"Song Wei, Caichao Wan, Xingong Li, Shanshan Jia, Ruwei Chen, Guanjie He, Yiqiang Wu","doi":"10.1002/advs.202410397","DOIUrl":null,"url":null,"abstract":"<p><p>3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging. Here, a superelastic wood nanocarbon sponge (WNCS) with a wrinkled multilayer structure is developed via a facile \"top-down\" design on natural wood. These unique wrinkled nanolayers effectively alleviate stress concentration through elastic deformation, resulting in a high compressive strength of 580.6 kPa at 70% reversible strain. The significantly increased specific surface area, coupled with abundant micro-mesopores and highly graphitized nanocarbon, promotes rapid ion/electron transport, enabling the WNCS to achieve an ultrahigh capacitance of 4.21 F cm<sup>-2</sup> at 1 mA cm<sup>-2</sup>, along with excellent cyclic stability and rate capability. Furthermore, an asymmetric supercapacitor (ASC) using a WNCS anode and a NiCo-layered double hydroxide cathode retains 71.8% of its initial capacitance after 1000 compression cycles and withstands stress up to 1.03 MPa without capacitance degradation. This sustainable, cost-effective WNCS shows great promise for flexible, compressible, and wearable electrochemical energy systems.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410397"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410397","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
3D porous carbon electrodes have attracted significant attention for advancing compressible supercapacitors (SCs) in flexible electronics. The micro- and nanoscale architecture critically influences the mechanical and electrochemical performance of these electrodes. However, achieving a balance between high compressive strength, electrochemical stability, and cost-effective sustainable production remains challenging. Here, a superelastic wood nanocarbon sponge (WNCS) with a wrinkled multilayer structure is developed via a facile "top-down" design on natural wood. These unique wrinkled nanolayers effectively alleviate stress concentration through elastic deformation, resulting in a high compressive strength of 580.6 kPa at 70% reversible strain. The significantly increased specific surface area, coupled with abundant micro-mesopores and highly graphitized nanocarbon, promotes rapid ion/electron transport, enabling the WNCS to achieve an ultrahigh capacitance of 4.21 F cm-2 at 1 mA cm-2, along with excellent cyclic stability and rate capability. Furthermore, an asymmetric supercapacitor (ASC) using a WNCS anode and a NiCo-layered double hydroxide cathode retains 71.8% of its initial capacitance after 1000 compression cycles and withstands stress up to 1.03 MPa without capacitance degradation. This sustainable, cost-effective WNCS shows great promise for flexible, compressible, and wearable electrochemical energy systems.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.