Melamine-Copolymerization Strategy Engineered Fluorinated Polyimides for Membrane-Based Sour Natural Gas Separation.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yi Ren, Patrick T Wright, Zhongyun Liu, Shijie Yang, Lu Lu, John Yang, Xuezhen Wang, Sheng Guo
{"title":"Melamine-Copolymerization Strategy Engineered Fluorinated Polyimides for Membrane-Based Sour Natural Gas Separation.","authors":"Yi Ren, Patrick T Wright, Zhongyun Liu, Shijie Yang, Lu Lu, John Yang, Xuezhen Wang, Sheng Guo","doi":"10.1002/advs.202416109","DOIUrl":null,"url":null,"abstract":"<p><p>Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO<sub>2</sub> and H<sub>2</sub>S removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes. The fluorinated copolyimide membranes that are structurally engineered exhibited excellent solution-processability and enhanced sweet-mixed gas selectivity compared to their original PI membranes. Additionally, under a five-component sour mixed-gas feed, these melamine-copolymerized fluorinated PI membranes provided superior combined H<sub>2</sub>S and CO<sub>2</sub> removal efficiency in comparison to conventional glassy polymer membranes. The melamine-copolymerization strategy provides an easily operable and generally effective approach to developing performance-enhancing PI membranes for sour natural gas separation.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2416109"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202416109","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO2 and H2S removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes. The fluorinated copolyimide membranes that are structurally engineered exhibited excellent solution-processability and enhanced sweet-mixed gas selectivity compared to their original PI membranes. Additionally, under a five-component sour mixed-gas feed, these melamine-copolymerized fluorinated PI membranes provided superior combined H2S and CO2 removal efficiency in comparison to conventional glassy polymer membranes. The melamine-copolymerization strategy provides an easily operable and generally effective approach to developing performance-enhancing PI membranes for sour natural gas separation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信