Large-Area Conductor-Loaded PDMS Flexible Composites for Wireless and Chipless Electromagnetic Multiplexed Temperature Sensors.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Benjamin King, Nikolas Bruce, Mahmoud Wagih
{"title":"Large-Area Conductor-Loaded PDMS Flexible Composites for Wireless and Chipless Electromagnetic Multiplexed Temperature Sensors.","authors":"Benjamin King, Nikolas Bruce, Mahmoud Wagih","doi":"10.1002/advs.202412066","DOIUrl":null,"url":null,"abstract":"<p><p>Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.5% at 200 MHz for PDMS-CF capacitors. PDMS-CF capacitors are interrogated as a sensing element in wirelessly coupled chipless resonant coils tuned to 6.78 MHz with a response in the resonant frequency (f<sub>r</sub>) of the sensor, demonstrating an average sensitivity of 0.38% °C<sup>-1</sup>, a 40x improvement over a pristine PDMS capacitive sensor and outperforms state-of-the-art frequency-domain radio frequency temperature sensors. Exploiting its high sensitivity, the wireless sensing platform is interrogated using a low-cost, portable, and open-source NanoVNA demonstrating a relative response in f<sub>r</sub> of 48.5%, good agreement with instrumentation-grade vector network analyzers (VNAs) and negligible change in performance at a range of reading distances and humidities. Finally, a wireless tag is demonstrated with rapid, reversible dynamic response to changes in temperature, as well as the in the first scalable, multiplexed array of chipless sensors for spatial temperature detection.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412066"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412066","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Capacitive dielectric temperature sensors based on polydimethylsiloxane (PDMS) loaded with 10 vol% of inexpensive, commercially-available conductive fillers including copper, graphite, and milled carbon fiber (PDMS-CF) powders are reported. The sensors are tested in the range of 20-110 °C and from 0.5 to 200 MHz, with enhanced sensitivity from 20 to 60 °C, and a relative response of 85.5% at 200 MHz for PDMS-CF capacitors. PDMS-CF capacitors are interrogated as a sensing element in wirelessly coupled chipless resonant coils tuned to 6.78 MHz with a response in the resonant frequency (fr) of the sensor, demonstrating an average sensitivity of 0.38% °C-1, a 40x improvement over a pristine PDMS capacitive sensor and outperforms state-of-the-art frequency-domain radio frequency temperature sensors. Exploiting its high sensitivity, the wireless sensing platform is interrogated using a low-cost, portable, and open-source NanoVNA demonstrating a relative response in fr of 48.5%, good agreement with instrumentation-grade vector network analyzers (VNAs) and negligible change in performance at a range of reading distances and humidities. Finally, a wireless tag is demonstrated with rapid, reversible dynamic response to changes in temperature, as well as the in the first scalable, multiplexed array of chipless sensors for spatial temperature detection.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信