Renuka Vijayaraghavan, M Vidyavathi, R V Suresh Kumar, Sravanthi Loganathan, Ravi Babu Valapa
{"title":"3D bioprinted poly(lactic acid) scaffolds infused with curcumin-loaded nanostructured lipid carriers: a promising approach for skin regeneration.","authors":"Renuka Vijayaraghavan, M Vidyavathi, R V Suresh Kumar, Sravanthi Loganathan, Ravi Babu Valapa","doi":"10.1039/d4bm01550a","DOIUrl":null,"url":null,"abstract":"<p><p>Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system. The goal is to investigate its potential as a vehicle for delivering poorly soluble curcumin for enhanced wound healing. The developed CNLC exhibited an oval morphology and average particle size of 292 nm. The entrapment efficiency (EE) was 81.37 ± 0.85%, and the drug loading capacity was 6.59 ± 1.61%. CNLC was then integrated into PLA-based 3D bioprinted scaffolds, and physicochemical analyses were conducted to evaluate their properties. Cell viability studies carried out using fibroblast cells demonstrated that the PLA/CNLC scaffolds are non-cytotoxic. <i>In vivo</i> experiments showed that the PLA/CNLC scaffolds exhibited complete wound contraction and closure of full-thickness wounds within a period of 21 days. The findings confirmed the scaffold's capacity as a tool for accelerating wound healing. The research emphasises the need for using biomimetic 3D printed scaffold materials and the promise of nanobiotechnology in enhancing treatment efficacy.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01550a","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Nanotechnology and 3D bioprinted scaffolds are revolutionizing the field of wound healing and skin regeneration. By facilitating proper cellular movement and providing a customizable structure that replicates the extracellular matrix, such technologies not only expedite the healing process but also ensure the seamless integration of new skin layers, enhancing tissue repair and promoting overall cell growth. This study centres on the creation and assessment of a nanostructured lipid carrier containing curcumin (CNLC), which is integrated into a 3D bioprinted PLA scaffold system. The goal is to investigate its potential as a vehicle for delivering poorly soluble curcumin for enhanced wound healing. The developed CNLC exhibited an oval morphology and average particle size of 292 nm. The entrapment efficiency (EE) was 81.37 ± 0.85%, and the drug loading capacity was 6.59 ± 1.61%. CNLC was then integrated into PLA-based 3D bioprinted scaffolds, and physicochemical analyses were conducted to evaluate their properties. Cell viability studies carried out using fibroblast cells demonstrated that the PLA/CNLC scaffolds are non-cytotoxic. In vivo experiments showed that the PLA/CNLC scaffolds exhibited complete wound contraction and closure of full-thickness wounds within a period of 21 days. The findings confirmed the scaffold's capacity as a tool for accelerating wound healing. The research emphasises the need for using biomimetic 3D printed scaffold materials and the promise of nanobiotechnology in enhancing treatment efficacy.
期刊介绍:
Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.