Engineered Cell Membrane-Coated Keratin Nanoparticles Attenuated Intervertebral Disc Degeneration by Remodeling the Disc Microenvironment.

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Hongyuan Xing, Run Li, Zizhan Huang, Zhongyang Gao, Qijiang Mao, Yifan Shen, Guanrui Huang, Guangyu Chu, Yue Wang
{"title":"Engineered Cell Membrane-Coated Keratin Nanoparticles Attenuated Intervertebral Disc Degeneration by Remodeling the Disc Microenvironment.","authors":"Hongyuan Xing, Run Li, Zizhan Huang, Zhongyang Gao, Qijiang Mao, Yifan Shen, Guanrui Huang, Guangyu Chu, Yue Wang","doi":"10.1002/adhm.202404173","DOIUrl":null,"url":null,"abstract":"<p><p>Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling. To achieve this, salivary acid glycoengineered adipose mesenchymal stem cell membranes are used to coat keratin, a core protein for structural support and cellular protection. The synthesized cell membrane-coated keratin nanoparticles (MKNs) effectively protected mitochondrial integrity in NP cells from oxidative stress-induced damage. Moreover, MKNs modulate mitochondrial metabolism and attenuate NP cell senescence. In addition, MKNs activate integrins at the cell membrane and enhance the interactions between NP cells and ECM, resulting in increased ECM anabolism and decreased catabolism. The proposed multi-targeted strategy to block the degenerative cycle inside the disc is efficacious for treating disc degeneration and may have the potential for clinical application.</p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":" ","pages":"e2404173"},"PeriodicalIF":10.0000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/adhm.202404173","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Characterized by a cascade of profound changes in nucleus pulposus (NP) cells, extracellular matrix (ECM), and biomechanics, intervertebral disc degeneration is a common multifactorial condition that may lead to various degenerative lumbar disorders. Therapeutic strategies targeting a single factor have shown limited efficacy in treating disc degeneration, and approaches that address multiple pathological ingredients are barely reported. In this study, engineered cell membrane-encapsulated keratin nanoparticles are developed to simultaneously alleviate NP cell senescence and promote ECM remodeling. To achieve this, salivary acid glycoengineered adipose mesenchymal stem cell membranes are used to coat keratin, a core protein for structural support and cellular protection. The synthesized cell membrane-coated keratin nanoparticles (MKNs) effectively protected mitochondrial integrity in NP cells from oxidative stress-induced damage. Moreover, MKNs modulate mitochondrial metabolism and attenuate NP cell senescence. In addition, MKNs activate integrins at the cell membrane and enhance the interactions between NP cells and ECM, resulting in increased ECM anabolism and decreased catabolism. The proposed multi-targeted strategy to block the degenerative cycle inside the disc is efficacious for treating disc degeneration and may have the potential for clinical application.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信