Murali Ganesan, Anup S Pathania, Grace Bybee, Kusum K Kharbanda, Larisa Y Poluektova, Natalia A Osna
{"title":"Ethanol Disrupts the Protective Crosstalk Between Macrophages and HBV-Infected Hepatocytes.","authors":"Murali Ganesan, Anup S Pathania, Grace Bybee, Kusum K Kharbanda, Larisa Y Poluektova, Natalia A Osna","doi":"10.3390/biom15010057","DOIUrl":null,"url":null,"abstract":"<p><p>About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes. This study was performed on HBV-replicating HepG2.2.15 cells and human monocyte-derived macrophages (MDMs). We found that exposure of HepG2.2.15 cells to an acetaldehyde-generating system (AGS) increased HBV RNA, HBV DNA, and cccDNA expressions and suppressed the activation of ISGs, <i>APOBEC3G</i>, <i>ISG15</i>, and <i>OAS1</i>. Supernatants collected from IFNα-activated MDMs decreased HBV marker levels and induced ISG activation in AGS-treated and untreated HepG2.215 cells. These effects were reversed by exposure of MDMs to ethanol and mimicked by treatment with exosome release inhibitor GW4869. We conclude that exosome-mediated crosstalk between IFN-activated macrophages and HBV-replicating hepatocytes plays a protective role via the up-regulation of ISGs and suppression of HBV replication. However, ethanol exposure to macrophages breaks this protection.</p>","PeriodicalId":8943,"journal":{"name":"Biomolecules","volume":"15 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11761873/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomolecules","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.3390/biom15010057","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
About 296 million people worldwide are living with chronic hepatitis B viral (HBV) infection, and outcomes to end-stage liver diseases are potentiated by alcohol. HBV replicates in hepatocytes, but other liver non-parenchymal cells can sense the virus. In this study, we aimed to investigate the regulatory effects of macrophages on HBV marker and interferon-stimulated genes (ISGs) expressions in hepatocytes. This study was performed on HBV-replicating HepG2.2.15 cells and human monocyte-derived macrophages (MDMs). We found that exposure of HepG2.2.15 cells to an acetaldehyde-generating system (AGS) increased HBV RNA, HBV DNA, and cccDNA expressions and suppressed the activation of ISGs, APOBEC3G, ISG15, and OAS1. Supernatants collected from IFNα-activated MDMs decreased HBV marker levels and induced ISG activation in AGS-treated and untreated HepG2.215 cells. These effects were reversed by exposure of MDMs to ethanol and mimicked by treatment with exosome release inhibitor GW4869. We conclude that exosome-mediated crosstalk between IFN-activated macrophages and HBV-replicating hepatocytes plays a protective role via the up-regulation of ISGs and suppression of HBV replication. However, ethanol exposure to macrophages breaks this protection.
BiomoleculesBiochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
9.40
自引率
3.60%
发文量
1640
审稿时长
18.28 days
期刊介绍:
Biomolecules (ISSN 2218-273X) is an international, peer-reviewed open access journal focusing on biogenic substances and their biological functions, structures, interactions with other molecules, and their microenvironment as well as biological systems. Biomolecules publishes reviews, regular research papers and short communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced.