Preparation and pharmacokinetic evaluation of a sertraline-methylpropyphenazone prodrug: a comparative metabolic study on the plasma and brain tissues of rats using LC-MS/MS analysis†

IF 3.9 3区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
RSC Advances Pub Date : 2025-01-28 DOI:10.1039/D4RA08357A
Alaa Khedr, Alanoud Ali, Tarek S. Ibrahim and Ahmed K. Kammoun
{"title":"Preparation and pharmacokinetic evaluation of a sertraline-methylpropyphenazone prodrug: a comparative metabolic study on the plasma and brain tissues of rats using LC-MS/MS analysis†","authors":"Alaa Khedr, Alanoud Ali, Tarek S. Ibrahim and Ahmed K. Kammoun","doi":"10.1039/D4RA08357A","DOIUrl":null,"url":null,"abstract":"<p >A mutual prodrug of sertraline-methylpropyphenazone (SER-MP) was prepared and characterized using a spectral method. The yield of the prepared SER-MP was 90%, and its purity reached 98.8%. The metabolic fate of the prepared SER-MP <em>versus</em> sertraline (SER) was investigated in the plasma and brain tissues of rats. A solid-phase extraction procedure was developed and validated for the optimal recovery of SER, 3-hydroxymethylpropyphenazone (3-OHMP), and SER-MP from plasma and brain tissues. The extraction efficiency for the targeted analytes was improved from 93.5% to 98.0% using Chromabond® C8-100 mg solid-phase extraction columns. A high-performance liquid chromatography-triple-quad-mass spectrometric method was developed and validated to quantify the SER, SER-MP, and potential metabolites. The pharmacokinetic parameters showed that the time to reach the maximum plasma concentration (<em>t</em><small><sub>max</sub></small>) for both SER and SER-MP was 6 hours, and the maximum plasma concentration of SER-MP reached 192 ng mL<small><sup>−1</sup></small> with an elimination half-life time of 50 hours. The plasma level of SER, which was released as a metabolite of orally administered SER-MP, was increased by 2.4 times compared to SER HCl administered at equimolar doses. The concentration of SER-MP in the rat brains remained approximately stable at 100 ng g<small><sup>−1</sup></small> for 0.5 to 192 hours. The serotonin level in the rat brain homogenate was 50 to 90 ng g<small><sup>−1</sup></small> for both the group receiving SER and that receiving an equal molar dose of SER-MP. This observation was consistent during a time range of 1 to 192 h from oral administration. Thus, this approach could lead to the development of more efficient antidepressant therapies with reduced side effects. The findings indicate that SER-MP could minimize serotonin syndrome risks by maintaining steady serotonin levels in the brain, thus improving patient safety and compliance.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 4","pages":" 2800-2809"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773334/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08357a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A mutual prodrug of sertraline-methylpropyphenazone (SER-MP) was prepared and characterized using a spectral method. The yield of the prepared SER-MP was 90%, and its purity reached 98.8%. The metabolic fate of the prepared SER-MP versus sertraline (SER) was investigated in the plasma and brain tissues of rats. A solid-phase extraction procedure was developed and validated for the optimal recovery of SER, 3-hydroxymethylpropyphenazone (3-OHMP), and SER-MP from plasma and brain tissues. The extraction efficiency for the targeted analytes was improved from 93.5% to 98.0% using Chromabond® C8-100 mg solid-phase extraction columns. A high-performance liquid chromatography-triple-quad-mass spectrometric method was developed and validated to quantify the SER, SER-MP, and potential metabolites. The pharmacokinetic parameters showed that the time to reach the maximum plasma concentration (tmax) for both SER and SER-MP was 6 hours, and the maximum plasma concentration of SER-MP reached 192 ng mL−1 with an elimination half-life time of 50 hours. The plasma level of SER, which was released as a metabolite of orally administered SER-MP, was increased by 2.4 times compared to SER HCl administered at equimolar doses. The concentration of SER-MP in the rat brains remained approximately stable at 100 ng g−1 for 0.5 to 192 hours. The serotonin level in the rat brain homogenate was 50 to 90 ng g−1 for both the group receiving SER and that receiving an equal molar dose of SER-MP. This observation was consistent during a time range of 1 to 192 h from oral administration. Thus, this approach could lead to the development of more efficient antidepressant therapies with reduced side effects. The findings indicate that SER-MP could minimize serotonin syndrome risks by maintaining steady serotonin levels in the brain, thus improving patient safety and compliance.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
RSC Advances
RSC Advances chemical sciences-
CiteScore
7.50
自引率
2.60%
发文量
3116
审稿时长
1.6 months
期刊介绍: An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信