Noble-Metal-Free ZnII-Anchored Pyrene-Based Covalent Organic Framework (COF) for Photocatalytic Fixation of CO2 from Dilute Gas into Bioactive 2-Oxazolidinones.

IF 7.5 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-01-29 DOI:10.1002/cssc.202402535
Ram Kishan, Pooja Rani, Nidhi Duhan, T J Dhilip Kumar, C M Nagaraja
{"title":"Noble-Metal-Free ZnII-Anchored Pyrene-Based Covalent Organic Framework (COF) for Photocatalytic Fixation of CO2 from Dilute Gas into Bioactive 2-Oxazolidinones.","authors":"Ram Kishan, Pooja Rani, Nidhi Duhan, T J Dhilip Kumar, C M Nagaraja","doi":"10.1002/cssc.202402535","DOIUrl":null,"url":null,"abstract":"<p><p>Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones. Notably, Zn-COF displayed absorption of visible light, with an optimal band gap of 1.8 eV, effectively catalyzing light-mediated functionalization of propargylic amines to 2-oxazolidinones under green conditions. Detailed experimental and theoretical mechanistic investigations demonstrated that light plays a crucial role in enhancing the efficacy of the photocatalyst, as it activates inert CO2 molecule to radical anion and thereby, lowers the energy barrier for its subsequent cyclization reaction with propargylic amine. Additionally, Zn-COF demonstrates promising catalytic performance utilizing dilute gas as the CO2 source. This is the first report regarding noble metal-free, Zn-COF exhibiting excellent photocatalytic carboxylative cyclization of CO2 with propargyl amines to prepare 2-oxazolidinones using dilute gas (13% CO2). This study offers a new direction for rationally constructing noble metal-free eco-friendly photocatalysts for achieving CO2 fixation reactions under eco-friendly conditions.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e202402535"},"PeriodicalIF":7.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202402535","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic conversion of CO2 into value-added chemicals offers a propitious alternative to traditional thermal methods, contributing to environmental remediation and energy sustainability. In this respect, covalent organic frameworks (COFs), are crystalline porous materials showcasing remarkable efficacy in CO2 fixation facilitated by visible light owing to their excellent photochemical properties. Herein, we employed Lewis acidic Zn(II) anchored pyrene-based COF (Zn(II)@Pybp-COF) to facilitate the photocatalytic CO2 utilization and transformation to 2-oxazolidinones. Notably, Zn-COF displayed absorption of visible light, with an optimal band gap of 1.8 eV, effectively catalyzing light-mediated functionalization of propargylic amines to 2-oxazolidinones under green conditions. Detailed experimental and theoretical mechanistic investigations demonstrated that light plays a crucial role in enhancing the efficacy of the photocatalyst, as it activates inert CO2 molecule to radical anion and thereby, lowers the energy barrier for its subsequent cyclization reaction with propargylic amine. Additionally, Zn-COF demonstrates promising catalytic performance utilizing dilute gas as the CO2 source. This is the first report regarding noble metal-free, Zn-COF exhibiting excellent photocatalytic carboxylative cyclization of CO2 with propargyl amines to prepare 2-oxazolidinones using dilute gas (13% CO2). This study offers a new direction for rationally constructing noble metal-free eco-friendly photocatalysts for achieving CO2 fixation reactions under eco-friendly conditions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信