Beam Scanning with Ultra-Low Sidelobes and In-Band Ultra-Low Scattering Characteristics Empowered by Single Space-Time-Coding Radiation-Scattering Metasurface.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Lixin Jiang, Yongfeng Li, Hao Yang, Mingbao Yan, Jinming Jiang, Yunwei Zhang, Zhe Qin, Wanwan Yang, Hongya Chen, Yongqiang Pang, Zhihao Guo, Lin Zheng, Jiafu Wang, Shaobo Qu
{"title":"Beam Scanning with Ultra-Low Sidelobes and In-Band Ultra-Low Scattering Characteristics Empowered by Single Space-Time-Coding Radiation-Scattering Metasurface.","authors":"Lixin Jiang, Yongfeng Li, Hao Yang, Mingbao Yan, Jinming Jiang, Yunwei Zhang, Zhe Qin, Wanwan Yang, Hongya Chen, Yongqiang Pang, Zhihao Guo, Lin Zheng, Jiafu Wang, Shaobo Qu","doi":"10.1002/advs.202413429","DOIUrl":null,"url":null,"abstract":"<p><p>The integrated modulation of radiation and scattering provides an unprecedented opportunity to reduce the number of electromagnetic (EM) apertures in the platform while simultaneously enhancing communication and stealth performance. Nevertheless, achieving full-polarization, arbitrary amplitude, and phase modulation of radiation scattering remains a challenge. In this paper, a strategy that realizes space-time coding of radiation scattering within the same frequency band, which enables the simultaneous and independent modulation of amplitude and phase, is proposed. To address the limitations of the high sideband levels (SBLs) of conventional space-time-coding metasurfaces, a strategy comprising nonuniform modulation periods and stochastic coding is proposed. Consequently, beam scanning with ultra-low sidelobe levels (SLLs) and suppressed SBLs is achieved in the radiation mode (RM). In scattering mode (SM), in-band low scattering characteristics are achieved within the same operating frequency band as RM. A prototype of a space-time-coding radiation-scattering metasurface (STCRSM) is fabricated and the aforementioned functionalities are validated by measurements. Furthermore, the proposed strategy does not necessitate the utilization of optimization algorithms and exhibits low SLLs and low SBLs, which will make it flourish in RF stealth applications, such as covert communication systems.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2413429"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202413429","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The integrated modulation of radiation and scattering provides an unprecedented opportunity to reduce the number of electromagnetic (EM) apertures in the platform while simultaneously enhancing communication and stealth performance. Nevertheless, achieving full-polarization, arbitrary amplitude, and phase modulation of radiation scattering remains a challenge. In this paper, a strategy that realizes space-time coding of radiation scattering within the same frequency band, which enables the simultaneous and independent modulation of amplitude and phase, is proposed. To address the limitations of the high sideband levels (SBLs) of conventional space-time-coding metasurfaces, a strategy comprising nonuniform modulation periods and stochastic coding is proposed. Consequently, beam scanning with ultra-low sidelobe levels (SLLs) and suppressed SBLs is achieved in the radiation mode (RM). In scattering mode (SM), in-band low scattering characteristics are achieved within the same operating frequency band as RM. A prototype of a space-time-coding radiation-scattering metasurface (STCRSM) is fabricated and the aforementioned functionalities are validated by measurements. Furthermore, the proposed strategy does not necessitate the utilization of optimization algorithms and exhibits low SLLs and low SBLs, which will make it flourish in RF stealth applications, such as covert communication systems.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信