Computational fluid dynamics simulation of temperature distribution in heated and stirred pilot-scale methanogenic reactor

IF 9.7 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Chuqiao Wang, Chaowei Kang, Shuiming Liu, Shan Huang, Xizi Long, Yuying Hu, Shuai Zhang, Jiajie Zhang
{"title":"Computational fluid dynamics simulation of temperature distribution in heated and stirred pilot-scale methanogenic reactor","authors":"Chuqiao Wang, Chaowei Kang, Shuiming Liu, Shan Huang, Xizi Long, Yuying Hu, Shuai Zhang, Jiajie Zhang","doi":"10.1016/j.jclepro.2025.144883","DOIUrl":null,"url":null,"abstract":"Suppressing temperature stratification is crucial for pilot-scale methanogenic reactor (MR) in two-phase anaerobic digestion. In this study, computational fluid dynamics was utilized to simulate changes in temperature distribution under various heating and hydraulic stirring conditions within the MR. Elevating heating temperature accelerated the process of the MR reaching the set temperature (35.5°C). However, excessively high heating temperature led to significant temperature differences. The maximum temperature difference varied from 2.15°C to 4°C when heating temperature ranged from 45°C to 75°C, respectively. Hydraulic stirring effectively mitigated temperature distribution, reducing the maximum temperature difference from 3°C to 1°C at stirring speed of 0.31 m/s when heating temperature was maintained at 55°C. The standard deviation of the temperatures at points P1-P5 and the average temperature decreased from 0.22 at 0.11 m/s to 0.076 at 0.31 m/s. Consequently, cumulative biogas production of the MR increased from 8.085 m³ to 12.975 m³ after implementing hydraulic stirring. Microbial community analysis revealed that methanogens were more susceptible to the effects of temperature distribution compared to bacteria. This study provides guidance for practical project implementations.","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"17 1","pages":""},"PeriodicalIF":9.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jclepro.2025.144883","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Suppressing temperature stratification is crucial for pilot-scale methanogenic reactor (MR) in two-phase anaerobic digestion. In this study, computational fluid dynamics was utilized to simulate changes in temperature distribution under various heating and hydraulic stirring conditions within the MR. Elevating heating temperature accelerated the process of the MR reaching the set temperature (35.5°C). However, excessively high heating temperature led to significant temperature differences. The maximum temperature difference varied from 2.15°C to 4°C when heating temperature ranged from 45°C to 75°C, respectively. Hydraulic stirring effectively mitigated temperature distribution, reducing the maximum temperature difference from 3°C to 1°C at stirring speed of 0.31 m/s when heating temperature was maintained at 55°C. The standard deviation of the temperatures at points P1-P5 and the average temperature decreased from 0.22 at 0.11 m/s to 0.076 at 0.31 m/s. Consequently, cumulative biogas production of the MR increased from 8.085 m³ to 12.975 m³ after implementing hydraulic stirring. Microbial community analysis revealed that methanogens were more susceptible to the effects of temperature distribution compared to bacteria. This study provides guidance for practical project implementations.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信