Complementary Speckle Stimulated Emission Depletion Microscopy

IF 6.5 1区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Payvand Arjmand, Samlan Chandran Thodika, Haoyang Li, Elsa Bivas, Martin Oheim, Hiroyuki Yoshida, Etienne Brasselet, Marc Guillon
{"title":"Complementary Speckle Stimulated Emission Depletion Microscopy","authors":"Payvand Arjmand, Samlan Chandran Thodika, Haoyang Li, Elsa Bivas, Martin Oheim, Hiroyuki Yoshida, Etienne Brasselet, Marc Guillon","doi":"10.1021/acsphotonics.4c01364","DOIUrl":null,"url":null,"abstract":"Stimulated emission depletion (STED) microscopy has emerged as a powerful technique providing visualization of biological structures at the molecular level in living samples. In this technique, the diffraction limit is broken by selectively depleting the fluorophore’s excited state by stimulated emission, typically using a donut-shaped optical vortex beam. STED microscopy performs exceptionally well in degraded optical conditions, such as living tissues. Nevertheless, photobleaching and acquisition time are among the main challenges for imaging large volumetric fields of view. In this regard, random light beams such as speckle patterns have proved to be especially promising for three-dimensional imaging in compressed sensing schemes. Taking advantage of the high spatial density of intrinsic optical vortices in speckles─one of the most commonly used types of structured beams in STED microscopy─we propose here a novel scheme that employs speckles for performing STED microscopy. Two speckle patterns are generated at the excitation and the depletion wavelengths, respectively, exhibiting inverted intensity contrasts. We illustrate spatial resolution enhancement using complementary speckles as excitation and depletion beams on both fluorescent beads and biological samples. Our results establish a robust method for super-resolved three-dimensional imaging with promising perspectives in terms of temporal resolution and photobleaching.","PeriodicalId":23,"journal":{"name":"ACS Photonics","volume":"27 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Photonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1021/acsphotonics.4c01364","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Stimulated emission depletion (STED) microscopy has emerged as a powerful technique providing visualization of biological structures at the molecular level in living samples. In this technique, the diffraction limit is broken by selectively depleting the fluorophore’s excited state by stimulated emission, typically using a donut-shaped optical vortex beam. STED microscopy performs exceptionally well in degraded optical conditions, such as living tissues. Nevertheless, photobleaching and acquisition time are among the main challenges for imaging large volumetric fields of view. In this regard, random light beams such as speckle patterns have proved to be especially promising for three-dimensional imaging in compressed sensing schemes. Taking advantage of the high spatial density of intrinsic optical vortices in speckles─one of the most commonly used types of structured beams in STED microscopy─we propose here a novel scheme that employs speckles for performing STED microscopy. Two speckle patterns are generated at the excitation and the depletion wavelengths, respectively, exhibiting inverted intensity contrasts. We illustrate spatial resolution enhancement using complementary speckles as excitation and depletion beams on both fluorescent beads and biological samples. Our results establish a robust method for super-resolved three-dimensional imaging with promising perspectives in terms of temporal resolution and photobleaching.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Photonics
ACS Photonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.90
自引率
5.70%
发文量
438
审稿时长
2.3 months
期刊介绍: Published as soon as accepted and summarized in monthly issues, ACS Photonics will publish Research Articles, Letters, Perspectives, and Reviews, to encompass the full scope of published research in this field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信