Low-dimensional Hetero-interlayer Enabling Sub-bandgap Photovoltaic Conversion for Perovskite Solar Cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yutong Wu, Bohong Chang, Hui Li, Lian Wang, Zhen Liu, Long-Wei Yin
{"title":"Low-dimensional Hetero-interlayer Enabling Sub-bandgap Photovoltaic Conversion for Perovskite Solar Cells","authors":"Yutong Wu, Bohong Chang, Hui Li, Lian Wang, Zhen Liu, Long-Wei Yin","doi":"10.1002/anie.202416284","DOIUrl":null,"url":null,"abstract":"Actualizing sub-bandgap photovoltaic conversion is effective in remitting energy loss and pushing theoretical efficiency limits for perovskite solar cells (PSCs). Herein, a zero-dimensional organic metal halide based on hydroxyquinoline (HQ) is developed to sensitize PSCs for near-infrared region gain to implement sub-bandgap photovoltaic conversion for enhancing power-conversion-efficiency (PCE) of PSCs. [ZnI4]2- skeletons containing heavy atoms intensify the direct singlet-to-triplet state transition of organic chromophores HQ, Meanwhile, the triplet energy of HQ is close to resonance with perovskite bandgap, favoring the energy transfer to perovskite and exciting the additional electron-hole pairs, which was observed by transient absorption spectroscopy, confirming the sensitization of perovskite to increase sub-bandgap photocurrent. HQ2ZnI4 modifies electronic and crystal structure, optimizes energy-level arrangement, and acts as a protective layer, realizing considerable PCEs in small (6.25 mm2)-/larger-area (1 cm2) devices and excellent operational stability. This low-cost strategy brings vitality to the light management of PSCs and expands low-dimensional materials.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"15 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202416284","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Actualizing sub-bandgap photovoltaic conversion is effective in remitting energy loss and pushing theoretical efficiency limits for perovskite solar cells (PSCs). Herein, a zero-dimensional organic metal halide based on hydroxyquinoline (HQ) is developed to sensitize PSCs for near-infrared region gain to implement sub-bandgap photovoltaic conversion for enhancing power-conversion-efficiency (PCE) of PSCs. [ZnI4]2- skeletons containing heavy atoms intensify the direct singlet-to-triplet state transition of organic chromophores HQ, Meanwhile, the triplet energy of HQ is close to resonance with perovskite bandgap, favoring the energy transfer to perovskite and exciting the additional electron-hole pairs, which was observed by transient absorption spectroscopy, confirming the sensitization of perovskite to increase sub-bandgap photocurrent. HQ2ZnI4 modifies electronic and crystal structure, optimizes energy-level arrangement, and acts as a protective layer, realizing considerable PCEs in small (6.25 mm2)-/larger-area (1 cm2) devices and excellent operational stability. This low-cost strategy brings vitality to the light management of PSCs and expands low-dimensional materials.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信