{"title":"Colloidal Quantum-Dot Heterojunction Imagers for Room-Temperature Thermal Imaging","authors":"Ge Mu, Xiaolong Zheng, Yimei Tan, Yanfei Liu, Qun Hao, Kangkang Weng, Xin Tang","doi":"10.1002/adma.202416877","DOIUrl":null,"url":null,"abstract":"Room-temperature operation or high-operation temperature (HOT) is essential for mid-wave infrared (MWIR) optoelectronics devices providing low-cost and compact systems for numerous applications. Colloidal quantum dots (CQDs) have emerged as a rising candidate to enable photodetectors to operate at HOT or room temperature and develop the next-generation infrared focal plane array (FPA) imagers. Here, band-engineered heterojunctions are demonstrated to suppress dark current with well-passivated mercury telluride (HgTe) CQDs enabling room-temperature MWIR imaging by single-pixel scanning and 640 × 512 FPA sensitive thermal imaging above 250 K. As a result, the room-temperature detectivity reaches as high as 1.26 × 10<sup>10</sup> Jones, and the noise equivalent temperature difference (<i>NETD</i>) is as good as 25 mK up to 200 K.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"146 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202416877","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Room-temperature operation or high-operation temperature (HOT) is essential for mid-wave infrared (MWIR) optoelectronics devices providing low-cost and compact systems for numerous applications. Colloidal quantum dots (CQDs) have emerged as a rising candidate to enable photodetectors to operate at HOT or room temperature and develop the next-generation infrared focal plane array (FPA) imagers. Here, band-engineered heterojunctions are demonstrated to suppress dark current with well-passivated mercury telluride (HgTe) CQDs enabling room-temperature MWIR imaging by single-pixel scanning and 640 × 512 FPA sensitive thermal imaging above 250 K. As a result, the room-temperature detectivity reaches as high as 1.26 × 1010 Jones, and the noise equivalent temperature difference (NETD) is as good as 25 mK up to 200 K.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.