High-Efficiency Y6 Homojunction Organic Solar Cells Enabled by a Secondary Hole Transport Layer

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-29 DOI:10.1002/smll.202409485
Shaun McAnally, Eucalyptus Brooks, Oliver Lindsay, Paul L. Burn, Ian R. Gentle, Paul E. Shaw
{"title":"High-Efficiency Y6 Homojunction Organic Solar Cells Enabled by a Secondary Hole Transport Layer","authors":"Shaun McAnally, Eucalyptus Brooks, Oliver Lindsay, Paul L. Burn, Ian R. Gentle, Paul E. Shaw","doi":"10.1002/smll.202409485","DOIUrl":null,"url":null,"abstract":"Y6 homojunction solar cells are prepared using the exciton/electron-blocking material poly[9,9-di-<i>n</i>-octylfluorene-<i>alt</i>-<i>N</i>-(4-<i>sec</i>-butylphenyl)diphenylamine] (TFB) as a secondary hole transport layer material in conjunction with PEDOT:PSS. Using this device architecture, a maximum power conversion efficiency (PCE) of 2.57% is achieved, which is the highest reported thus far for a solution-processed small molecule homojunction organic photovoltaic (OPV) device. The devices display an unexpectedly low thickness dependence, with the average PCE only decreasing by ≈17% when the Y6 active layer thickness is increased from 80 to 300 nm. Time-resolved photoluminescence measurements show that the TFB does not contribute to charge generation through photoinduced hole or electron transfer. However, transient absorption spectroscopy on thin films of neat Y6 and a 1:1 blend of Y6:TFB shows that the TFB enhances the formation of the long-lived Y6 intermolecular charge-transfer state in the blend film. It is found that careful selection of the electron transport layer (ETL) is required to avoid unintended charge generation at the interface with Y6 so as to ensure that the device is a true homojunction. The improved efficiency of this architecture is attributed to the electron-blocking and hole-extraction effects of the TFB layer.","PeriodicalId":228,"journal":{"name":"Small","volume":"22 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202409485","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Y6 homojunction solar cells are prepared using the exciton/electron-blocking material poly[9,9-di-n-octylfluorene-alt-N-(4-sec-butylphenyl)diphenylamine] (TFB) as a secondary hole transport layer material in conjunction with PEDOT:PSS. Using this device architecture, a maximum power conversion efficiency (PCE) of 2.57% is achieved, which is the highest reported thus far for a solution-processed small molecule homojunction organic photovoltaic (OPV) device. The devices display an unexpectedly low thickness dependence, with the average PCE only decreasing by ≈17% when the Y6 active layer thickness is increased from 80 to 300 nm. Time-resolved photoluminescence measurements show that the TFB does not contribute to charge generation through photoinduced hole or electron transfer. However, transient absorption spectroscopy on thin films of neat Y6 and a 1:1 blend of Y6:TFB shows that the TFB enhances the formation of the long-lived Y6 intermolecular charge-transfer state in the blend film. It is found that careful selection of the electron transport layer (ETL) is required to avoid unintended charge generation at the interface with Y6 so as to ensure that the device is a true homojunction. The improved efficiency of this architecture is attributed to the electron-blocking and hole-extraction effects of the TFB layer.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信