Ultrastrong, Highly Resilient, and Humidity-Sensitive Wood Nano-Aerogel Composed of Resembling Native-State Fibrils

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yan Jiang, Liyun Cheng, Mengmeng Yang, Lu Xiao, Shuangfei Wang, Xiuyu Liu
{"title":"Ultrastrong, Highly Resilient, and Humidity-Sensitive Wood Nano-Aerogel Composed of Resembling Native-State Fibrils","authors":"Yan Jiang,&nbsp;Liyun Cheng,&nbsp;Mengmeng Yang,&nbsp;Lu Xiao,&nbsp;Shuangfei Wang,&nbsp;Xiuyu Liu","doi":"10.1002/adfm.202419155","DOIUrl":null,"url":null,"abstract":"<p>Fast-evolving nanotechnologies have supported traditional wood industries to breach the barriers and slip into tailor-made functional nanomaterials that cater to the high-tech and low-carbon era. Here, wood cell walls are in situ nanofibrillated via reversible hemicellulose supermolecular regulation toward versatile mesoporous wood nano-aerogels. The as-prepared wood nano-aerogels are composed of highly combinative high-aspect-ratio fibrils resembling native-state “core (cellulose)-shell (hemicellulose)” nanostructure, which is unreachable for conventional in situ nanofibrillation strategies involving depolymerization of non-cellulosic phases and topochemical engineering of cellulosic phase. The hemicellulose-induced in situ nanofibrillation mechanism is systematically elucidated via theoretical and experimental analysis: the enhanced swelling of hemicellulose supermolecules in specific polar cosolvent (e.g., ionic liquid/water) significantly weakens the fibril–fibril interactions within wood fiber cells without affecting the macromolecular structures. The desired structural features of in situ nanofibrillated fiber cells including high mesoporosity and microstructural homogeneity contribute to significant poroelastic dissipation and efficient stress transfer under external stress, which in turn leads to an exceptional combination of compressive strength and resilience for the as-prepared wood nano-aerogel. Furthermore, the highly hydrophilic hemicellulose “shells” of constituent nanofibrils within mesoporous cell walls endow the strong and resilient wood nano-aerogel with superior humidity responsiveness, thereby opening up vast possibilities for applications in sensing, process monitoring, and energy management systems. This work provides a feasible and environmentally benign wood nanostructure-engineered strategy for top-down manufacturing of high-performance lignocellulosic nanomaterials by leveraging the inherent functionality of wood structural constituents.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 23","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adfm.202419155","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Fast-evolving nanotechnologies have supported traditional wood industries to breach the barriers and slip into tailor-made functional nanomaterials that cater to the high-tech and low-carbon era. Here, wood cell walls are in situ nanofibrillated via reversible hemicellulose supermolecular regulation toward versatile mesoporous wood nano-aerogels. The as-prepared wood nano-aerogels are composed of highly combinative high-aspect-ratio fibrils resembling native-state “core (cellulose)-shell (hemicellulose)” nanostructure, which is unreachable for conventional in situ nanofibrillation strategies involving depolymerization of non-cellulosic phases and topochemical engineering of cellulosic phase. The hemicellulose-induced in situ nanofibrillation mechanism is systematically elucidated via theoretical and experimental analysis: the enhanced swelling of hemicellulose supermolecules in specific polar cosolvent (e.g., ionic liquid/water) significantly weakens the fibril–fibril interactions within wood fiber cells without affecting the macromolecular structures. The desired structural features of in situ nanofibrillated fiber cells including high mesoporosity and microstructural homogeneity contribute to significant poroelastic dissipation and efficient stress transfer under external stress, which in turn leads to an exceptional combination of compressive strength and resilience for the as-prepared wood nano-aerogel. Furthermore, the highly hydrophilic hemicellulose “shells” of constituent nanofibrils within mesoporous cell walls endow the strong and resilient wood nano-aerogel with superior humidity responsiveness, thereby opening up vast possibilities for applications in sensing, process monitoring, and energy management systems. This work provides a feasible and environmentally benign wood nanostructure-engineered strategy for top-down manufacturing of high-performance lignocellulosic nanomaterials by leveraging the inherent functionality of wood structural constituents.

Abstract Image

Abstract Image

Abstract Image

超强,高弹性和湿度敏感的木材纳米气凝胶组成的类似天然纤维
快速发展的纳米技术已经支持传统木材工业突破障碍,进入定制的功能性纳米材料,以迎合高科技和低碳时代。在这里,木材细胞壁通过可逆的半纤维素超分子调控被原位纳米纤化成多用途的介孔木材纳米气凝胶。制备的木材纳米气凝胶由高度组合的高纵横比纤维组成,类似于天然状态的“核(纤维素)-壳(半纤维素)”纳米结构,这是传统的原位纳米纤维化策略所无法达到的,这些策略涉及非纤维素相的解聚和纤维素相的拓扑化学工程。通过理论和实验分析系统地阐明了半纤维素诱导的原位纳米颤动机制:半纤维素超分子在特定极性共溶剂(如离子液体/水)中的增强膨胀显著削弱了木纤维细胞内原纤维-原纤维相互作用,而不影响大分子结构。原位纳米纤化纤维细胞所需的结构特征包括高介孔率和微观结构均匀性,有助于在外部应力下显著的孔弹性耗散和有效的应力传递,这反过来又导致制备的木材纳米气凝胶具有优异的抗压强度和回弹性组合。此外,中孔细胞壁内纳米原纤维组成的高亲水性半纤维素“壳”赋予木材纳米气凝胶强大而有弹性,具有优异的湿度响应能力,从而为传感、过程监控和能源管理系统的应用开辟了广阔的可能性。这项工作提供了一种可行的、环保的木材纳米结构工程策略,通过利用木材结构成分的固有功能,自上而下地制造高性能木质纤维素纳米材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信