Construction of Nanocellulose Aerogels with Environmental Drying Strategy without Organic Solvent Displacement for High-Efficiency Solar Steam Generation

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-01-30 DOI:10.1021/acsnano.4c12228
Shiyu Zong, Chi Feng, Fuhou Lei, Liwei Zhu, Jianxin Jiang, Jiufang Duan
{"title":"Construction of Nanocellulose Aerogels with Environmental Drying Strategy without Organic Solvent Displacement for High-Efficiency Solar Steam Generation","authors":"Shiyu Zong, Chi Feng, Fuhou Lei, Liwei Zhu, Jianxin Jiang, Jiufang Duan","doi":"10.1021/acsnano.4c12228","DOIUrl":null,"url":null,"abstract":"Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported. In this paper, a foam skeleton template (FST) strategy is proposed, in which flake graphite is entangled by cellulose nanofibers (CNFs) and codispersed between the foam cell walls, and subsequently connected with the nascent Ca<sup>2+</sup> in the inner wall to form a tough and stable three-dimensional network structure, which can effectively avoid the structural collapse caused by atmospheric drying. The cellulose/graphite aerogel (CGA) prepared using the FST strategy possesses lightweight (36 mg cm<sup>–3</sup>) and porous (porosity &gt;97%) properties. The 3D porous structure and wetting characteristics of the CGA provided excellent energy management, rapid water transport capability, and a reduced enthalpy of evaporation, which enabled it to achieve a fast water evaporation rate of 3.8 kg m<sup>–2</sup> h<sup>–1</sup> with 98.4% energy efficiency. This FST strategy provides a solution for the low-cost development of aerogel and desalination.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"39 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c12228","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Solar desalination is one of the effective means to alleviate water scarcity, in which aerogel-like evaporators have attracted extensive attention in the field of efficient desalination. However, the current preparation methods for aerogels still mainly rely on high-cost solutions, such as freeze-drying or supercritical drying. Herein, a preparation scheme for aerogels that can be realized under atmospheric pressure conditions is reported. In this paper, a foam skeleton template (FST) strategy is proposed, in which flake graphite is entangled by cellulose nanofibers (CNFs) and codispersed between the foam cell walls, and subsequently connected with the nascent Ca2+ in the inner wall to form a tough and stable three-dimensional network structure, which can effectively avoid the structural collapse caused by atmospheric drying. The cellulose/graphite aerogel (CGA) prepared using the FST strategy possesses lightweight (36 mg cm–3) and porous (porosity >97%) properties. The 3D porous structure and wetting characteristics of the CGA provided excellent energy management, rapid water transport capability, and a reduced enthalpy of evaporation, which enabled it to achieve a fast water evaporation rate of 3.8 kg m–2 h–1 with 98.4% energy efficiency. This FST strategy provides a solution for the low-cost development of aerogel and desalination.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信