{"title":"Proximity-Induced Superconductivity in Ferromagnetic Fe3GeTe2 and Josephson Tunneling through a van der Waals Heterojunction","authors":"Guojing Hu, Changlong Wang, Jingdi Lu, Yuanmin Zhu, Chuanying Xi, Xiang Ma, Yutong Yang, Ying Zhang, Shasha Wang, Meng Gu, Jinxing Zhang, Yalin Lu, Ping Cui, Guorui Chen, Wenguang Zhu, Bin Xiang, Zhenyu Zhang","doi":"10.1021/acsnano.4c16050","DOIUrl":null,"url":null,"abstract":"Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity. We report unambiguous experimental evidence of superconductivity in few-layer ferromagnetic Fe<sub>3</sub>GeTe<sub>2</sub> (FGT) proximity coupled to a superconducting NbSe<sub>2</sub> overlayer through an insulating spacer, demonstrating coexistence of these two seemingly antagonistic orderings. Our transport measurements reveal a sudden resistance drop to zero in FGT below the superconducting critical temperature of NbSe<sub>2</sub> and detect a Josephson supercurrent through the NbSe<sub>2</sub>/insulator/FGT van der Waals junction. Furthermore, using anomalous Hall effect and magnetic force microscopy characterizations, we confirm that FGT preserves its ferromagnetism in the superconducting regime. Our central findings reveal the microscopic harmony between ferromagnetism and superconductivity and render these systems immense technological potentials.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"27 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c16050","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Synergy between superconductivity and ferromagnetism may offer great opportunities in nondissipative spintronics and topological quantum computing. Yet at the microscopic level, the exchange splitting of the electronic states responsible for ferromagnetism is inherently incompatible with the spin-singlet nature of conventional superconducting Cooper pairs. Here, we exploit the recently discovered van der Waals ferromagnets as enabling platforms with marvelous controllability to unravel the myth between ferromagnetism and superconductivity. We report unambiguous experimental evidence of superconductivity in few-layer ferromagnetic Fe3GeTe2 (FGT) proximity coupled to a superconducting NbSe2 overlayer through an insulating spacer, demonstrating coexistence of these two seemingly antagonistic orderings. Our transport measurements reveal a sudden resistance drop to zero in FGT below the superconducting critical temperature of NbSe2 and detect a Josephson supercurrent through the NbSe2/insulator/FGT van der Waals junction. Furthermore, using anomalous Hall effect and magnetic force microscopy characterizations, we confirm that FGT preserves its ferromagnetism in the superconducting regime. Our central findings reveal the microscopic harmony between ferromagnetism and superconductivity and render these systems immense technological potentials.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.