{"title":"Blocking constitutive autophagy rescues the loss of acquired heat resistance in Arabidopsis fes1a","authors":"Xuezhi Li, Tong Su, Xiaofeng Wang, Yan Liu, Jingjing Ge, Panfei Huo, Yiwu Zhao, Tongtong Wang, Hongbin Yu, Meijie Duan, Yuebin Jia, Xianpeng Yang, Pingping Wang, Qingqiu Gong, Jian Liu, Changle Ma","doi":"10.1111/nph.20393","DOIUrl":null,"url":null,"abstract":"<p>\n</p><ul>\n<li>High temperature is one of several major abiotic stresses that can cause substantial loss of crop yields. Heat shock proteins (HSPs) are key components of heat stress resistance. Mutation of FES1A, an auxiliary molecular chaperone of HSP70, leads to defective acquired thermotolerance. Autophagy is a positive regulator of basal thermotolerance and a negative regulator of heat stress memory, but its function in acquired thermotolerance is unclear.</li>\n<li>We found that blocking constitutive autophagy rescued the heat sensitivity of <i>fes1a</i> in <i>Arabidopsis thaliana</i>. Immunoblot and proteomic analyses showed that the rescue was not due to increased HSP levels. Instead, proteomic analysis and confocal microscopy studies revealed that knocking out the core autophagy-related (<i>ATG</i>) genes leads to accumulation of peroxisomes, thus upregulating the metabolic pathways within the peroxisomes.</li>\n<li>Accumulation of peroxisomes promotes both reactive oxygen species scavenging and indole-3-acetic acid (IAA) production in <i>atg7 fes1a</i>. Overexpression of ABCD1/PXA1/CTS, a peroxisomal ATP-binding cassette transporter, in <i>atg7 fes1a</i> leads to abnormal peroxisomal function and subsequently thermosensitivity. Moreover, we found that exogenous application of indole-3-butyric acid, IAA or naphthalene-1-acetic acid rescued <i>fes1a</i> heat sensitivity.</li>\n<li>We propose that autophagy is detrimental to the survival of the <i>fes1a</i> mutant, which has acquired thermosensitivity.</li>\n</ul><p></p>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":"13 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/nph.20393","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
High temperature is one of several major abiotic stresses that can cause substantial loss of crop yields. Heat shock proteins (HSPs) are key components of heat stress resistance. Mutation of FES1A, an auxiliary molecular chaperone of HSP70, leads to defective acquired thermotolerance. Autophagy is a positive regulator of basal thermotolerance and a negative regulator of heat stress memory, but its function in acquired thermotolerance is unclear.
We found that blocking constitutive autophagy rescued the heat sensitivity of fes1a in Arabidopsis thaliana. Immunoblot and proteomic analyses showed that the rescue was not due to increased HSP levels. Instead, proteomic analysis and confocal microscopy studies revealed that knocking out the core autophagy-related (ATG) genes leads to accumulation of peroxisomes, thus upregulating the metabolic pathways within the peroxisomes.
Accumulation of peroxisomes promotes both reactive oxygen species scavenging and indole-3-acetic acid (IAA) production in atg7 fes1a. Overexpression of ABCD1/PXA1/CTS, a peroxisomal ATP-binding cassette transporter, in atg7 fes1a leads to abnormal peroxisomal function and subsequently thermosensitivity. Moreover, we found that exogenous application of indole-3-butyric acid, IAA or naphthalene-1-acetic acid rescued fes1a heat sensitivity.
We propose that autophagy is detrimental to the survival of the fes1a mutant, which has acquired thermosensitivity.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.