Knocking out the carboxyltransferase interactor 1 (CTI1) in Chlamydomonas boosted oil content by fivefold without affecting cell growth

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhongze Li, Minjae Kim, Jose Roberto da Silva Nascimento, Bertrand Legeret, Gabriel Lemes Jorge, Marie Bertrand, Fred Beisson, Jay J. Thelen, Yonghua Li-Beisson
{"title":"Knocking out the carboxyltransferase interactor 1 (CTI1) in Chlamydomonas boosted oil content by fivefold without affecting cell growth","authors":"Zhongze Li, Minjae Kim, Jose Roberto da Silva Nascimento, Bertrand Legeret, Gabriel Lemes Jorge, Marie Bertrand, Fred Beisson, Jay J. Thelen, Yonghua Li-Beisson","doi":"10.1111/pbi.14581","DOIUrl":null,"url":null,"abstract":"The first step in chloroplast <i>de novo</i> fatty acid synthesis is catalysed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homologue of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein interacts with the Chlamydomonas α-carboxyltransferase (Crα-CT) subunit of the ACCase by yeast two-hybrid protein–protein interaction assay. Three independent CRISPR-Cas9 mediated knockout mutants for CrCTI1 each produced an ‘enhanced oil’ phenotype, accumulating 25% more total fatty acids and storing up to fivefold more triacylglycerols (TAGs) in lipid droplets. The TAG phenotype of the <i>crcti1</i> mutants was not influenced by light but was affected by trophic growth conditions. By growing cells under heterotrophic conditions, we observed a crucial function of CrCTI1 in balancing lipid accumulation and cell growth. Mutating a previously mapped <i>in vivo</i> phosphorylation site (CrCTI1 Ser108 to either Ala or to Asp), did not affect the interaction with Crα-CT. However, mutating all six predicted phosphorylation sites within Crα-CT to create a phosphomimetic mutant reduced this pairwise interaction significantly. Comparative proteomic analyses of the <i>crcti1</i> mutants and WT suggested a role for CrCTI1 in regulating carbon flux by coordinating carbon metabolism, antioxidant and fatty acid β-oxidation pathways, to enable cells to adapt to carbon availability. Taken together, this study identifies CrCTI1 as a negative regulator of fatty acid synthesis in algae and provides a new molecular brick for the genetic engineering of microalgae for biotechnology purposes.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"207 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14581","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The first step in chloroplast de novo fatty acid synthesis is catalysed by acetyl-CoA carboxylase (ACCase). As the rate-limiting step for this pathway, ACCase is subject to both positive and negative regulation. In this study, we identify a Chlamydomonas homologue of the plant carboxyltransferase interactor 1 (CrCTI1) and show that this protein interacts with the Chlamydomonas α-carboxyltransferase (Crα-CT) subunit of the ACCase by yeast two-hybrid protein–protein interaction assay. Three independent CRISPR-Cas9 mediated knockout mutants for CrCTI1 each produced an ‘enhanced oil’ phenotype, accumulating 25% more total fatty acids and storing up to fivefold more triacylglycerols (TAGs) in lipid droplets. The TAG phenotype of the crcti1 mutants was not influenced by light but was affected by trophic growth conditions. By growing cells under heterotrophic conditions, we observed a crucial function of CrCTI1 in balancing lipid accumulation and cell growth. Mutating a previously mapped in vivo phosphorylation site (CrCTI1 Ser108 to either Ala or to Asp), did not affect the interaction with Crα-CT. However, mutating all six predicted phosphorylation sites within Crα-CT to create a phosphomimetic mutant reduced this pairwise interaction significantly. Comparative proteomic analyses of the crcti1 mutants and WT suggested a role for CrCTI1 in regulating carbon flux by coordinating carbon metabolism, antioxidant and fatty acid β-oxidation pathways, to enable cells to adapt to carbon availability. Taken together, this study identifies CrCTI1 as a negative regulator of fatty acid synthesis in algae and provides a new molecular brick for the genetic engineering of microalgae for biotechnology purposes.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信