{"title":"Integrin Trafficking, Fibronectin Architecture, and Glomerular Injury upon AdipoR1 Depletion.","authors":"Sonja Lindfors,Constanze Schmotz,Dominik Lewandowski,Annika Hau,Leena Saikko,Eero Lehtonen,Ville Majaniemi,Minna Karhe,Jette-Britt Naams,Harry Nisen,Jukka Tienari,Moin A Saleem,Katharina Pfeil,Heiko Bugger,Kirsi H Pietiläinen,Tuomas Mirtti,Krzysztof Palczewski,Sanna Lehtonen","doi":"10.1681/asn.0000000611","DOIUrl":null,"url":null,"abstract":"BACKGROUND\r\nDeficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling via adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2), but the role of AdipoR-mediated signaling in glomerular injury in type 2 diabetes remains unknown.\r\n\r\nMETHODS\r\nThe expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1-knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting. The functional role of AdipoR1 was studied in AdipoR1-deficient podocytes by performing assays for apoptosis, cytokine secretion, mechanical stress, adhesion, and endocytic trafficking.\r\n\r\nRESULTS\r\nGlomerular AdipoR1 expression was lower in type 2 diabetes and associated kidney disease, correlating with higher BMI and podocyte loss. Male AdipoR1-KO mice showed typical signs of early diabetic kidney disease, including albuminuria, glomerular structural abnormalities, and lower expression of central podocyte proteins; females were less affected. Podocyte apoptosis increased in female and male AdipoR1-KO mice and excessive podocyte loss, potentially due to detachment, was detected in males. AdipoR1 deficiency impaired the YAP-mediated mechanoresponse and induced accumulation of the extracellular matrix (ECM) protein fibronectin in the glomeruli in vivo, and podocytes in vitro. Functionally, AdipoR1 deficiency impaired endocytosis of the ECM receptor active integrin β1, disturbed focal adhesion turnover, and remodulated podocyte-derived ECM, thereby reducing podocyte adhesion.\r\n\r\nCONCLUSIONS\r\nAdipoR1 deficiency in mice resulted in the development of kidney injury predominantly in males. Mechanistically, AdipoR1 loss in podocytes impaired endocytosis of active integrin β1, which plausibly compromised focal adhesion dynamics, disturbed fibronectin matrix turnover, and hindered podocyte adhesion.","PeriodicalId":17217,"journal":{"name":"Journal of The American Society of Nephrology","volume":"60 1","pages":""},"PeriodicalIF":10.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The American Society of Nephrology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1681/asn.0000000611","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"UROLOGY & NEPHROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
BACKGROUND
Deficiency of adiponectin and its downstream signaling may contribute to the pathogenesis of kidney injury in type 2 diabetes. Adiponectin activates intracellular signaling via adiponectin receptors 1 and 2 (AdipoR1 and AdipoR2), but the role of AdipoR-mediated signaling in glomerular injury in type 2 diabetes remains unknown.
METHODS
The expression of AdipoR1 in the kidneys of people with type 2 diabetes and the expression of podocyte proteins or injury markers in the kidneys of AdipoR1-knockout (AdipoR1-KO) mice and immortalized AdipoR1-deficient human podocytes were investigated by immunohistochemistry and immunoblotting. The functional role of AdipoR1 was studied in AdipoR1-deficient podocytes by performing assays for apoptosis, cytokine secretion, mechanical stress, adhesion, and endocytic trafficking.
RESULTS
Glomerular AdipoR1 expression was lower in type 2 diabetes and associated kidney disease, correlating with higher BMI and podocyte loss. Male AdipoR1-KO mice showed typical signs of early diabetic kidney disease, including albuminuria, glomerular structural abnormalities, and lower expression of central podocyte proteins; females were less affected. Podocyte apoptosis increased in female and male AdipoR1-KO mice and excessive podocyte loss, potentially due to detachment, was detected in males. AdipoR1 deficiency impaired the YAP-mediated mechanoresponse and induced accumulation of the extracellular matrix (ECM) protein fibronectin in the glomeruli in vivo, and podocytes in vitro. Functionally, AdipoR1 deficiency impaired endocytosis of the ECM receptor active integrin β1, disturbed focal adhesion turnover, and remodulated podocyte-derived ECM, thereby reducing podocyte adhesion.
CONCLUSIONS
AdipoR1 deficiency in mice resulted in the development of kidney injury predominantly in males. Mechanistically, AdipoR1 loss in podocytes impaired endocytosis of active integrin β1, which plausibly compromised focal adhesion dynamics, disturbed fibronectin matrix turnover, and hindered podocyte adhesion.
期刊介绍:
The Journal of the American Society of Nephrology (JASN) stands as the preeminent kidney journal globally, offering an exceptional synthesis of cutting-edge basic research, clinical epidemiology, meta-analysis, and relevant editorial content. Representing a comprehensive resource, JASN encompasses clinical research, editorials distilling key findings, perspectives, and timely reviews.
Editorials are skillfully crafted to elucidate the essential insights of the parent article, while JASN actively encourages the submission of Letters to the Editor discussing recently published articles. The reviews featured in JASN are consistently erudite and comprehensive, providing thorough coverage of respective fields. Since its inception in July 1990, JASN has been a monthly publication.
JASN publishes original research reports and editorial content across a spectrum of basic and clinical science relevant to the broad discipline of nephrology. Topics covered include renal cell biology, developmental biology of the kidney, genetics of kidney disease, cell and transport physiology, hemodynamics and vascular regulation, mechanisms of blood pressure regulation, renal immunology, kidney pathology, pathophysiology of kidney diseases, nephrolithiasis, clinical nephrology (including dialysis and transplantation), and hypertension. Furthermore, articles addressing healthcare policy and care delivery issues relevant to nephrology are warmly welcomed.