Out of the Lab and into the Environment: The Evolution of Single Particle ICP-MS Over the Past Decade

IF 5.8 2区 环境科学与生态学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Aaron Goodman, Brianna Benner, Manuel David Montaño
{"title":"Out of the Lab and into the Environment: The Evolution of Single Particle ICP-MS Over the Past Decade","authors":"Aaron Goodman, Brianna Benner, Manuel David Montaño","doi":"10.1039/d4en00804a","DOIUrl":null,"url":null,"abstract":"The development and application of engineered nanomaterials has required pushing the boundaries of analytical instrumentation in order to detect, quantify and characterize the properties and behaviors of materials at the nanoscale. One technique, single particle ICP-MS, has stood apart for its ability to characterize and quantify inorganic nanomaterials at low concentrations and in complex environmental and biological media. For the past 20 years, this technique has matured significantly, with an ever-expanding scope of application. Where initially it was capable of analyzing precious metal nanoparticles in relatively pristine solutions, now it can be used to characterize multiple different NP populations of varying elemental and isotopic compositions. The types of materials analyzed now extend beyond traditional metallic NPs, with such varied materials as nanominerals, carbon nanotubes, biological cells, and microplastics. In this perspective, we examine the key developments in the past decade of spICP-MS and aim to provide a vision for what this field may look like 10 years from now. The study of nanoparticles, both natural and engineered, will continue to play a vital role in our understanding of climate change, anthropogenic impact, and biogeochemical cycling of nutrients and contaminants in a rapidly changing environment.","PeriodicalId":73,"journal":{"name":"Environmental Science: Nano","volume":"11 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Nano","FirstCategoryId":"6","ListUrlMain":"https://doi.org/10.1039/d4en00804a","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The development and application of engineered nanomaterials has required pushing the boundaries of analytical instrumentation in order to detect, quantify and characterize the properties and behaviors of materials at the nanoscale. One technique, single particle ICP-MS, has stood apart for its ability to characterize and quantify inorganic nanomaterials at low concentrations and in complex environmental and biological media. For the past 20 years, this technique has matured significantly, with an ever-expanding scope of application. Where initially it was capable of analyzing precious metal nanoparticles in relatively pristine solutions, now it can be used to characterize multiple different NP populations of varying elemental and isotopic compositions. The types of materials analyzed now extend beyond traditional metallic NPs, with such varied materials as nanominerals, carbon nanotubes, biological cells, and microplastics. In this perspective, we examine the key developments in the past decade of spICP-MS and aim to provide a vision for what this field may look like 10 years from now. The study of nanoparticles, both natural and engineered, will continue to play a vital role in our understanding of climate change, anthropogenic impact, and biogeochemical cycling of nutrients and contaminants in a rapidly changing environment.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Science: Nano
Environmental Science: Nano CHEMISTRY, MULTIDISCIPLINARY-ENVIRONMENTAL SCIENCES
CiteScore
12.20
自引率
5.50%
发文量
290
审稿时长
2.1 months
期刊介绍: Environmental Science: Nano serves as a comprehensive and high-impact peer-reviewed source of information on the design and demonstration of engineered nanomaterials for environment-based applications. It also covers the interactions between engineered, natural, and incidental nanomaterials with biological and environmental systems. This scope includes, but is not limited to, the following topic areas: Novel nanomaterial-based applications for water, air, soil, food, and energy sustainability Nanomaterial interactions with biological systems and nanotoxicology Environmental fate, reactivity, and transformations of nanoscale materials Nanoscale processes in the environment Sustainable nanotechnology including rational nanomaterial design, life cycle assessment, risk/benefit analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信