Analytical Solutions for Steady-State Oxygen Transport in Soil With Microbial and Plant Root Sinks

IF 4 2区 农林科学 Q2 SOIL SCIENCE
Freeman J. Cook
{"title":"Analytical Solutions for Steady-State Oxygen Transport in Soil With Microbial and Plant Root Sinks","authors":"Freeman J. Cook","doi":"10.1111/ejss.70032","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A complete model using analytical solutions for one-dimensional oxygen transport from the atmosphere into soil with microbial and root sinks that builds on work over 30 years is developed. This new model uses concepts from a previously published model for one distributed sink and two sinks with a distributed (microbial) and line (root) sink. It removes the problem, in previous publications, of matching the flux at the joining point between the two sink solution where the root sink ceases and the single sink at a finite depth. Analytical solutions are developed for integer values of <i>p</i> = <i>Z</i><sub><i>r</i></sub>/<i>Z</i><sub><i>m</i></sub>, where <i>Z</i><sub><i>m</i></sub> is the scaling depth for microbial respiration and <i>Z</i><sub><i>r</i></sub> is the scaling depth for root length density. The solutions allow two critical diffusivity (<i>D</i>) values to be defined (<i>D</i><sub><i>c</i></sub>) and (<i>D</i><sub><i>c</i>2</sub>). When <i>D</i><sub><i>c</i>2</sub> ≤ <i>D</i> &lt; <i>D</i><sub><i>c</i></sub>, a procedure is presented to calculate the depth, <i>z</i><sub>1</sub>, where <i>C</i><sup><i>′</i></sup> <i>=</i> 0 and this is the depth where root uptake of oxygen ceases and is shown to be related to <i>D</i>/<i>D</i><sub><i>c</i></sub>. When <i>D</i> &lt; <i>D</i><sub><i>c</i>2</sub>, a procedure is presented to estimate the depth, <i>Z</i><sub>0</sub>, at which the oxygen concentration = 0 and is shown to be related to <i>D/D</i><sub><i>c</i>2</sub>. These results have useful applications in determining soil aeration, soil biogeochemical reactions, soil surface flux of oxygen and carbon dioxide, and the effect of climate change on these processes through the temperature dependence of the solution. These results suggest the oxygen diffusion rate (ODR) is likely to be the best estimator of soil aeration but there will not be a universal value for all plants. The surface flux density of oxygen into the soil for both the microbial sink (<i>S</i><sub><i>m</i></sub>) and total sink (<i>f</i><sub>0</sub>) are presented and the ratio is shown to be related to <span></span><math>\n <semantics>\n <mrow>\n <mi>D</mi>\n <mo>/</mo>\n <msubsup>\n <mi>D</mi>\n <mi>a</mi>\n <mn>0</mn>\n </msubsup>\n </mrow>\n <annotation>$$ D/{D}_a^0 $$</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>D</mi>\n <mi>a</mi>\n <mi>o</mi>\n </msubsup>\n </mrow>\n <annotation>$$ {D}_a^o $$</annotation>\n </semantics></math> is the diffusivity in air). The possible range in <i>S</i><sub><i>m</i></sub>/<i>f</i><sub>0</sub> is shown to be compatible with measured values from the literature. The solutions have many applications in environmental science.</p>\n </div>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70032","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

A complete model using analytical solutions for one-dimensional oxygen transport from the atmosphere into soil with microbial and root sinks that builds on work over 30 years is developed. This new model uses concepts from a previously published model for one distributed sink and two sinks with a distributed (microbial) and line (root) sink. It removes the problem, in previous publications, of matching the flux at the joining point between the two sink solution where the root sink ceases and the single sink at a finite depth. Analytical solutions are developed for integer values of p = Zr/Zm, where Zm is the scaling depth for microbial respiration and Zr is the scaling depth for root length density. The solutions allow two critical diffusivity (D) values to be defined (Dc) and (Dc2). When Dc2 ≤ D < Dc, a procedure is presented to calculate the depth, z1, where C= 0 and this is the depth where root uptake of oxygen ceases and is shown to be related to D/Dc. When D < Dc2, a procedure is presented to estimate the depth, Z0, at which the oxygen concentration = 0 and is shown to be related to D/Dc2. These results have useful applications in determining soil aeration, soil biogeochemical reactions, soil surface flux of oxygen and carbon dioxide, and the effect of climate change on these processes through the temperature dependence of the solution. These results suggest the oxygen diffusion rate (ODR) is likely to be the best estimator of soil aeration but there will not be a universal value for all plants. The surface flux density of oxygen into the soil for both the microbial sink (Sm) and total sink (f0) are presented and the ratio is shown to be related to D / D a 0 $$ D/{D}_a^0 $$ ( D a o $$ {D}_a^o $$ is the diffusivity in air). The possible range in Sm/f0 is shown to be compatible with measured values from the literature. The solutions have many applications in environmental science.

Abstract Image

微生物和植物根汇在土壤中稳态氧运输的解析解
在30多年的研究工作基础上,建立了一个完整的模型,该模型使用了从大气到土壤微生物和根汇的一维氧运输的解析解。这个新模型使用了先前发布的一个分布式汇和两个具有分布式(微生物)和线(根)汇的汇的模型中的概念。在以前的出版物中,它消除了在根汇停止的两个汇解和在有限深度的单个汇之间的连接点匹配通量的问题。得到p = Zr/Zm整数值的解析解,其中Zm为微生物呼吸的标度深度,Zr为根长密度的标度深度。该解决方案允许定义两个临界扩散系数(D)值(Dc)和(Dc2)。当Dc2≤D <;Dc,给出了计算深度z1的方法,其中C ' = 0,这是根停止吸收氧气的深度,并显示与D/Dc有关。当D <;Dc2,给出了一个估计深度的方法,Z0,在氧气浓度= 0时,它与D/Dc2有关。这些结果在确定土壤通气性、土壤生物地球化学反应、土壤表面氧和二氧化碳通量以及气候变化对这些过程的影响(通过溶液的温度依赖性)方面具有重要的应用价值。这些结果表明,氧扩散速率(ODR)可能是土壤通气性的最佳估计,但不会对所有植物都有一个普遍的值。给出了微生物汇(Sm)和总汇(f0)进入土壤的氧的表面通量密度,其比值与空气中的扩散率有关。Sm/f0的可能范围与文献中的测量值相一致。这些解决方案在环境科学中有许多应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
European Journal of Soil Science
European Journal of Soil Science 农林科学-土壤科学
CiteScore
8.20
自引率
4.80%
发文量
117
审稿时长
5 months
期刊介绍: The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信