Oligodendrocyte precursor cells facilitate neuronal lysosome release

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Li-Pao Fang, Ching-Hsin Lin, Yasser Medlej, Renping Zhao, Hsin-Fang Chang, Qilin Guo, Zhonghao Wu, Yixun Su, Na Zhao, Davide Gobbo, Amanda Wyatt, Vanessa Wahl, Frederic Fiore, Szu-Min Tu, Ulrich Boehm, Wenhui Huang, Shan Bian, Amit Agarwal, Marcel A. Lauterbach, Chenju Yi, Jianqin Niu, Anja Scheller, Frank Kirchhoff, Xianshu Bai
{"title":"Oligodendrocyte precursor cells facilitate neuronal lysosome release","authors":"Li-Pao Fang, Ching-Hsin Lin, Yasser Medlej, Renping Zhao, Hsin-Fang Chang, Qilin Guo, Zhonghao Wu, Yixun Su, Na Zhao, Davide Gobbo, Amanda Wyatt, Vanessa Wahl, Frederic Fiore, Szu-Min Tu, Ulrich Boehm, Wenhui Huang, Shan Bian, Amit Agarwal, Marcel A. Lauterbach, Chenju Yi, Jianqin Niu, Anja Scheller, Frank Kirchhoff, Xianshu Bai","doi":"10.1038/s41467-025-56484-8","DOIUrl":null,"url":null,"abstract":"<p>Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes. A reduction in the number or branching of OPCs reduces these contacts, which is associated with lysosome accumulation and altered metabolism in neurons and more senescent neurons with age. A similar reduction in OPC branching and neuronal lysosome accumulation is seen in an early-stage mouse model of Alzheimer’s disease. Our findings have implications for the prevention of age-related pathologies and the treatment of neurodegenerative diseases.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"40 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56484-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Oligodendrocyte precursor cells (OPCs) shape brain function through many non-canonical regulatory mechanisms beyond myelination. Here we show that OPCs form contacts with their processes on neuronal somata in a neuronal activity-dependent manner. These contacts facilitate exocytosis of neuronal lysosomes. A reduction in the number or branching of OPCs reduces these contacts, which is associated with lysosome accumulation and altered metabolism in neurons and more senescent neurons with age. A similar reduction in OPC branching and neuronal lysosome accumulation is seen in an early-stage mouse model of Alzheimer’s disease. Our findings have implications for the prevention of age-related pathologies and the treatment of neurodegenerative diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信