Monolithic electrostatic actuators with independent stiffness modulation

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yuejun Xu, Jian Wen, Etienne Burdet, Majid Taghavi
{"title":"Monolithic electrostatic actuators with independent stiffness modulation","authors":"Yuejun Xu, Jian Wen, Etienne Burdet, Majid Taghavi","doi":"10.1038/s41467-025-56455-z","DOIUrl":null,"url":null,"abstract":"<p>Robotic artificial muscles, inspired by the adaptability of biological muscles, outperform rigid robots in dynamic environments due to their flexibility. However, the intrinsic compliance of the soft actuators restricts force transmission capacity and dynamic response. Biological muscle modulates their stiffness and damping, varying viscoelastic properties and force in interaction with the surroundings. Here we replicate this function in the electro-stiffened ribbon actuator, a monolithic strong actuator capable of high contraction and stiffness modulation. electro-stiffened ribbon actuator employs dielectric-liquid-amplified electrostatic forces for contraction, and electrorheological fluid for rapid (&lt;10 ms) stiffness and damping adjustments. This seamless integration enables contractile force modulation, extending its capability as a lightweight variable resistance passive spring by over 2.5 times, and improves its dynamic responses, with faster contractions and rapid attenuation of oscillations by more than 50%. We demonstrate electro-stiffened ribbon actuator’s versatility in active, passive and dual connection functions, including arm-bending wearable robotics, robotic arms with variable impact resistance and muscle-like stiffness and damping modulation.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"45 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56455-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Robotic artificial muscles, inspired by the adaptability of biological muscles, outperform rigid robots in dynamic environments due to their flexibility. However, the intrinsic compliance of the soft actuators restricts force transmission capacity and dynamic response. Biological muscle modulates their stiffness and damping, varying viscoelastic properties and force in interaction with the surroundings. Here we replicate this function in the electro-stiffened ribbon actuator, a monolithic strong actuator capable of high contraction and stiffness modulation. electro-stiffened ribbon actuator employs dielectric-liquid-amplified electrostatic forces for contraction, and electrorheological fluid for rapid (<10 ms) stiffness and damping adjustments. This seamless integration enables contractile force modulation, extending its capability as a lightweight variable resistance passive spring by over 2.5 times, and improves its dynamic responses, with faster contractions and rapid attenuation of oscillations by more than 50%. We demonstrate electro-stiffened ribbon actuator’s versatility in active, passive and dual connection functions, including arm-bending wearable robotics, robotic arms with variable impact resistance and muscle-like stiffness and damping modulation.

Abstract Image

具有独立刚度调制的单片静电致动器
机器人人工肌肉受生物肌肉适应性的启发,由于其灵活性,在动态环境中优于刚性机器人。然而,软执行机构固有的顺应性限制了其传力能力和动态响应。生物肌肉调节它们的刚度和阻尼,在与周围环境的相互作用中改变粘弹性和力。在这里,我们复制了这一功能的电加筋带状致动器,一个整体强致动器能够高收缩和刚度调制。电加筋带状驱动器采用电介质液体放大的静电力进行收缩,电流变流体进行快速(10毫秒)的刚度和阻尼调节。这种无缝集成实现了收缩力调制,将其作为轻型可变电阻被动弹簧的能力扩展了2.5倍以上,并改善了其动态响应,收缩速度更快,振荡衰减速度超过50%。我们展示了电强化带状驱动器在主动、被动和双连接功能上的多功能性,包括手臂弯曲可穿戴机器人,具有可变抗冲击能力和类似肌肉的刚度和阻尼调制的机械手臂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信