Cytotoxic pyrrole-based gold(III) chelates target human topoisomerase II as dual-mode inhibitors and interact with human serum albumin

IF 6 2区 医学 Q1 CHEMISTRY, MEDICINAL
Sheldon Sookai, Matthew Akerman, Mia Færch, Yasien Sayed, Orde Q. Munro
{"title":"Cytotoxic pyrrole-based gold(III) chelates target human topoisomerase II as dual-mode inhibitors and interact with human serum albumin","authors":"Sheldon Sookai, Matthew Akerman, Mia Færch, Yasien Sayed, Orde Q. Munro","doi":"10.1016/j.ejmech.2025.117330","DOIUrl":null,"url":null,"abstract":"Topoisomerase IIα (Top II) is a critical enzyme that resolves DNA topology during transcription and replication. Inhibitors of Top II are used as anticancer agents and are classified as interfacial poisons (IFPs) or catalytic inhibitors (CICs). Here, we report a novel class of cytotoxic, stable cationic gold(III) Schiff base chelates (<strong>AuL1</strong>, <strong>AuL2</strong>, and <strong>AuL3</strong>) with DNA-intercalating properties. In the NCI-60 screen, <strong>AuL1</strong> and <strong>AuL3</strong> exhibited potent cytotoxicity (mean GI<sub>50</sub> values of 11 (7) μM and 14 (9) μM, respectively), whereas <strong>AuL2</strong> showed minimal cytotoxicity. Cluster analysis aligned <strong>AuL1</strong> and <strong>AuL3</strong> with the Top II poison etoposide. Mechanistic studies revealed that <strong>AuL1</strong> acts as an IFP at concentrations between 0.5–50 μM and as a CIC at concentrations between 50–500 μM. Further investigations demonstrated that all three gold(III) chelates bind to and intercalate DNA, the main substrate for Top II. Finally, binding studies with human serum albumin (HSA) indicated that the chelates have moderate affinity for the protein. Thermodynamic analysis indicates entropically driven binding, with minimal structural disruption observed via UV-CD spectroscopy. These findings highlight the dual mode Top II inhibition mechanism delineated for the gold(III) chelates and their favourable pharmacodynamic interactions with HSA, underscoring their potential as promising anticancer agents.","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":"46 1","pages":""},"PeriodicalIF":6.0000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ejmech.2025.117330","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Topoisomerase IIα (Top II) is a critical enzyme that resolves DNA topology during transcription and replication. Inhibitors of Top II are used as anticancer agents and are classified as interfacial poisons (IFPs) or catalytic inhibitors (CICs). Here, we report a novel class of cytotoxic, stable cationic gold(III) Schiff base chelates (AuL1, AuL2, and AuL3) with DNA-intercalating properties. In the NCI-60 screen, AuL1 and AuL3 exhibited potent cytotoxicity (mean GI50 values of 11 (7) μM and 14 (9) μM, respectively), whereas AuL2 showed minimal cytotoxicity. Cluster analysis aligned AuL1 and AuL3 with the Top II poison etoposide. Mechanistic studies revealed that AuL1 acts as an IFP at concentrations between 0.5–50 μM and as a CIC at concentrations between 50–500 μM. Further investigations demonstrated that all three gold(III) chelates bind to and intercalate DNA, the main substrate for Top II. Finally, binding studies with human serum albumin (HSA) indicated that the chelates have moderate affinity for the protein. Thermodynamic analysis indicates entropically driven binding, with minimal structural disruption observed via UV-CD spectroscopy. These findings highlight the dual mode Top II inhibition mechanism delineated for the gold(III) chelates and their favourable pharmacodynamic interactions with HSA, underscoring their potential as promising anticancer agents.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
11.70
自引率
9.00%
发文量
863
审稿时长
29 days
期刊介绍: The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers. A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信