Ana Laura Sosa, Natalia Soledad Girardi, Laura Cristina Rosso, Fabricio Salusso, María Alejandra Passone
{"title":"Integrated application of biological and biorational strategies for effective control of the “false root-knot nematode” in tomato plants","authors":"Ana Laura Sosa, Natalia Soledad Girardi, Laura Cristina Rosso, Fabricio Salusso, María Alejandra Passone","doi":"10.1007/s10340-025-01869-3","DOIUrl":null,"url":null,"abstract":"<p>In the rhizosphere ecosystem, the tomato develops associated with a diversity of microorganisms and/or organisms, many of which can be beneficial or pathogenic for this plant. Plant-parasitic nematodes (PPN) produce significant economic losses in tomato crops. <i>Nacobbus sp</i>. is one of the most frequent and abundant PPN in Argentina. Management of this nematode through biological strategies constitutes an eco-compatible alternative to ensure the sustainability of the horticultural system. In this work, the potential of the combined application of broccoli aqueous extract (BAE—12%) and <i>Purpureocillium lilacinum</i> SR14 (1 × 10<sup>6</sup> conidia g<sup>−1</sup>) for the control of <i>N. aberrans s.l.</i> in tomato (<i>Solanum lycopersicum</i> cv. Platense) plants were evaluated. The chamber test was conducted with sterile horticultural soil, artificially infested with J2, while naturally infested horticultural soil was employed for the greenhouse test. The antagonist activities of <i>P. lilacinum</i> SR14, BAE and SR14 + BAE against the <i>N. aberrans s.l.</i> population were evaluated in the two assays. Results showed that the combined treatment (<i>P. lilacinum</i> SR14 + BAE) significantly reduced the PPN population, both in chamber (22%) and greenhouse (98%) grown plants. Furthermore, it was demonstrated that both strategies were compatible with each other, the host crop and the soil microbiome. Therefore, this type of agroecological practice, could be a plausible alternative to be adopted by horticultural producers in Argentina for the control of the phytonematode, <i>N. aberrans s.l.</i></p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"29 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01869-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the rhizosphere ecosystem, the tomato develops associated with a diversity of microorganisms and/or organisms, many of which can be beneficial or pathogenic for this plant. Plant-parasitic nematodes (PPN) produce significant economic losses in tomato crops. Nacobbus sp. is one of the most frequent and abundant PPN in Argentina. Management of this nematode through biological strategies constitutes an eco-compatible alternative to ensure the sustainability of the horticultural system. In this work, the potential of the combined application of broccoli aqueous extract (BAE—12%) and Purpureocillium lilacinum SR14 (1 × 106 conidia g−1) for the control of N. aberrans s.l. in tomato (Solanum lycopersicum cv. Platense) plants were evaluated. The chamber test was conducted with sterile horticultural soil, artificially infested with J2, while naturally infested horticultural soil was employed for the greenhouse test. The antagonist activities of P. lilacinum SR14, BAE and SR14 + BAE against the N. aberrans s.l. population were evaluated in the two assays. Results showed that the combined treatment (P. lilacinum SR14 + BAE) significantly reduced the PPN population, both in chamber (22%) and greenhouse (98%) grown plants. Furthermore, it was demonstrated that both strategies were compatible with each other, the host crop and the soil microbiome. Therefore, this type of agroecological practice, could be a plausible alternative to be adopted by horticultural producers in Argentina for the control of the phytonematode, N. aberrans s.l.
期刊介绍:
Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues.
Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates.
Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management.
Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.