Fiber‐Reinforced Ultrathin Solid Polymer Electrolyte for Solid‐State Lithium‐Metal Batteries

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yining Zhang, Jiameng Yu, Hongsheng Shi, Shuanghong Wang, Yinjie Lv, Yue Zhang, Qiong Yuan, Jinjiang Liang, Tianyi Gao, Ran Wei, Xin Chen, Luyao Wang, Yi Yu, Wei Liu
{"title":"Fiber‐Reinforced Ultrathin Solid Polymer Electrolyte for Solid‐State Lithium‐Metal Batteries","authors":"Yining Zhang, Jiameng Yu, Hongsheng Shi, Shuanghong Wang, Yinjie Lv, Yue Zhang, Qiong Yuan, Jinjiang Liang, Tianyi Gao, Ran Wei, Xin Chen, Luyao Wang, Yi Yu, Wei Liu","doi":"10.1002/adfm.202421054","DOIUrl":null,"url":null,"abstract":"Reducing the thickness of solid polymer electrolytes can help to enhance the energy density for solid‐state batteries. However, ultrathin electrolytes still face difficulties in preparation methods, mechanical properties, and interface instability. Herein, a free‐standing, scalable, and ultrathin solid polymer electrolyte with a thickness of 10 µm is reported. It is achieved through in situ thermal curing after filling a porous electrospun polyacrylonitrile fiber membrane with poly(ethylene glycol) diacrylate‐based electrolyte. Impressively, it contributes to a high ionic conductivity of 8.8 × 10<jats:sup>−4</jats:sup> S cm<jats:sup>−1</jats:sup> at room temperature. The membrane can not only provide good mechanical strength but also offer a Li<jats:sub>3</jats:sub>N‐enriched solid electrolyte interphase, thereby stabilizing the lithium metal anode. The pouch cell pairing the ultrathin electrolyte with Li foil and LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> cathode of high mass loading can realize a gravimetric/volumetric energy density of 380 Wh kg<jats:sup>−1</jats:sup> and 936 Wh L<jats:sup>−1</jats:sup>. This investigation provides new insights into the potential of fiber‐reinforced membranes for high‐performance solid‐state batteries.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"10 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202421054","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Reducing the thickness of solid polymer electrolytes can help to enhance the energy density for solid‐state batteries. However, ultrathin electrolytes still face difficulties in preparation methods, mechanical properties, and interface instability. Herein, a free‐standing, scalable, and ultrathin solid polymer electrolyte with a thickness of 10 µm is reported. It is achieved through in situ thermal curing after filling a porous electrospun polyacrylonitrile fiber membrane with poly(ethylene glycol) diacrylate‐based electrolyte. Impressively, it contributes to a high ionic conductivity of 8.8 × 10−4 S cm−1 at room temperature. The membrane can not only provide good mechanical strength but also offer a Li3N‐enriched solid electrolyte interphase, thereby stabilizing the lithium metal anode. The pouch cell pairing the ultrathin electrolyte with Li foil and LiNi0.8Co0.1Mn0.1O2 cathode of high mass loading can realize a gravimetric/volumetric energy density of 380 Wh kg−1 and 936 Wh L−1. This investigation provides new insights into the potential of fiber‐reinforced membranes for high‐performance solid‐state batteries.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信