Defect-Engineered Biomimetic Piezoelectric Nanocomposites With Enhanced ROS Production, Macrophage Re-polarization, and Ca2+ Channel Activation for Therapy of MRSA-Infected Wounds and Osteomyelitis

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-29 DOI:10.1002/smll.202411906
Shubham Roy, Shaohua Wang, Zia Ullah, Huiyao Hao, Renhao Xu, Jhilik Roy, Tingting Gong, Ikram Hasan, Wei Jiang, Menglong Li, Dhananjoy Mondal, Jihong Li, Jian Jin, Yinghe Zhang, Wujiong Xia, Bing Guo
{"title":"Defect-Engineered Biomimetic Piezoelectric Nanocomposites With Enhanced ROS Production, Macrophage Re-polarization, and Ca2+ Channel Activation for Therapy of MRSA-Infected Wounds and Osteomyelitis","authors":"Shubham Roy, Shaohua Wang, Zia Ullah, Huiyao Hao, Renhao Xu, Jhilik Roy, Tingting Gong, Ikram Hasan, Wei Jiang, Menglong Li, Dhananjoy Mondal, Jihong Li, Jian Jin, Yinghe Zhang, Wujiong Xia, Bing Guo","doi":"10.1002/smll.202411906","DOIUrl":null,"url":null,"abstract":"Antibiotic-resistant bacteria often cause lethal infections in both the surficial and deep organs of humans. Failure of antibiotics in resistant infections leads to more effective alternative therapies, like spatiotemporally controllable piezodynamic therapy (PZDT) with deep penetration. Currently, PZDT demands further investigation for improved treatment outcomes and the corresponding therapeutic mechanisms. Herein, a nanocomposite cloaked is reported with a biomimetic coating of TLR-upregulated macrophage membrane for targeted PZDT against MRSA-induced skin wound infection and osteomyelitis, representing surficial and deep infection models, respectively. To boost the therapeutic efficacy, crystal defect engineering is applied by impregnating Fe<sup>2+</sup> into bismuth oxy-iodide nanosheets to increase the crystal defects. This results in a significantly higher piezoelectric coefficient than in previous reports, contributing to an amplified reactive oxygen species generation for bacterial killing. More importantly, the notable piezoelectric effect not only re-programs the macrophages into an anti-inflammatory M2 phenotype for accelerating bacterial wound healing but also stimulates the opening of the piezo-stimulated Ca<sup>2+</sup> channels and boosts the differentiation of mesenchymal stem cells into osteoblasts for expediting bone tissue repair in osteomyelitis model. Moreover, the Fe-doping supplements T2-magnetic resonance imaging for real-time visualization of nanocomposite distribution. This theranostic system opens a new avenue for future treatment of drug-resistant bacteria-caused diseases.","PeriodicalId":228,"journal":{"name":"Small","volume":"74 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411906","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibiotic-resistant bacteria often cause lethal infections in both the surficial and deep organs of humans. Failure of antibiotics in resistant infections leads to more effective alternative therapies, like spatiotemporally controllable piezodynamic therapy (PZDT) with deep penetration. Currently, PZDT demands further investigation for improved treatment outcomes and the corresponding therapeutic mechanisms. Herein, a nanocomposite cloaked is reported with a biomimetic coating of TLR-upregulated macrophage membrane for targeted PZDT against MRSA-induced skin wound infection and osteomyelitis, representing surficial and deep infection models, respectively. To boost the therapeutic efficacy, crystal defect engineering is applied by impregnating Fe2+ into bismuth oxy-iodide nanosheets to increase the crystal defects. This results in a significantly higher piezoelectric coefficient than in previous reports, contributing to an amplified reactive oxygen species generation for bacterial killing. More importantly, the notable piezoelectric effect not only re-programs the macrophages into an anti-inflammatory M2 phenotype for accelerating bacterial wound healing but also stimulates the opening of the piezo-stimulated Ca2+ channels and boosts the differentiation of mesenchymal stem cells into osteoblasts for expediting bone tissue repair in osteomyelitis model. Moreover, the Fe-doping supplements T2-magnetic resonance imaging for real-time visualization of nanocomposite distribution. This theranostic system opens a new avenue for future treatment of drug-resistant bacteria-caused diseases.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信