High-Entropy Oxychalcogenide for Hydrogen Spillover Enhanced Hydrogen Evolution Reaction in Proton and Anion Exchange Membrane Water Electrolyzers

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-29 DOI:10.1002/smll.202411883
Seunghwan Jo, Ki Hoon Shin, Eunmin Kim, Jung Inn Sohn
{"title":"High-Entropy Oxychalcogenide for Hydrogen Spillover Enhanced Hydrogen Evolution Reaction in Proton and Anion Exchange Membrane Water Electrolyzers","authors":"Seunghwan Jo, Ki Hoon Shin, Eunmin Kim, Jung Inn Sohn","doi":"10.1002/smll.202411883","DOIUrl":null,"url":null,"abstract":"The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic–cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover. The HEOC exhibits low overpotentials of 52 and 57 mV to obtain a current density of 10 mA cm<sup>−2</sup> in acidic and alkaline media, respectively, and long-term stability for 500 h. The electrochemical and analytical approaches elucidate the hydrogen transfer toward Mo/W−O sites in both acid and alkaline HERs. Meanwhile, the other sites act as hydrogen adsorption or water dissociation-derived hydroxide adsorption sites, showing accommodable behavior in acidic and alkaline media. The HEOC exhibits a practically high current of 1 A cm<sup>−2</sup> at cell voltages of 1.78 and 1.89 V and long-term stability for 100 h in proton and anion exchange membrane water electrolyzers, respectively.","PeriodicalId":228,"journal":{"name":"Small","volume":"147 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411883","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic–cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover. The HEOC exhibits low overpotentials of 52 and 57 mV to obtain a current density of 10 mA cm−2 in acidic and alkaline media, respectively, and long-term stability for 500 h. The electrochemical and analytical approaches elucidate the hydrogen transfer toward Mo/W−O sites in both acid and alkaline HERs. Meanwhile, the other sites act as hydrogen adsorption or water dissociation-derived hydroxide adsorption sites, showing accommodable behavior in acidic and alkaline media. The HEOC exhibits a practically high current of 1 A cm−2 at cell voltages of 1.78 and 1.89 V and long-term stability for 100 h in proton and anion exchange membrane water electrolyzers, respectively.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信