Seunghwan Jo, Ki Hoon Shin, Eunmin Kim, Jung Inn Sohn
{"title":"High-Entropy Oxychalcogenide for Hydrogen Spillover Enhanced Hydrogen Evolution Reaction in Proton and Anion Exchange Membrane Water Electrolyzers","authors":"Seunghwan Jo, Ki Hoon Shin, Eunmin Kim, Jung Inn Sohn","doi":"10.1002/smll.202411883","DOIUrl":null,"url":null,"abstract":"The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic–cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover. The HEOC exhibits low overpotentials of 52 and 57 mV to obtain a current density of 10 mA cm<sup>−2</sup> in acidic and alkaline media, respectively, and long-term stability for 500 h. The electrochemical and analytical approaches elucidate the hydrogen transfer toward Mo/W−O sites in both acid and alkaline HERs. Meanwhile, the other sites act as hydrogen adsorption or water dissociation-derived hydroxide adsorption sites, showing accommodable behavior in acidic and alkaline media. The HEOC exhibits a practically high current of 1 A cm<sup>−2</sup> at cell voltages of 1.78 and 1.89 V and long-term stability for 100 h in proton and anion exchange membrane water electrolyzers, respectively.","PeriodicalId":228,"journal":{"name":"Small","volume":"147 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411883","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The hydrogen spillover phenomenon provides an expeditious reaction pathway via hydrogen transfer from a strong H adsorption site to a weak H adsorption site, enabling a cost-efficient hydrogen evolution reaction (HER) analogous to platinum with moderate H adsorption energy. Here, a high-entropy oxychalcogenide (HEOC) comprising Co, Ni, Mo, W, O, Se, and Te is prepared by a two-step electrochemical deposition for hydrogen spillover-enhanced HER in acidic and alkaline water electrolysis. The anodic–cathodic reversal current enables the co-deposition of cations and aliovalent anions, facilitating a glass structure with multiple active sites for hydrogen spillover. The HEOC exhibits low overpotentials of 52 and 57 mV to obtain a current density of 10 mA cm−2 in acidic and alkaline media, respectively, and long-term stability for 500 h. The electrochemical and analytical approaches elucidate the hydrogen transfer toward Mo/W−O sites in both acid and alkaline HERs. Meanwhile, the other sites act as hydrogen adsorption or water dissociation-derived hydroxide adsorption sites, showing accommodable behavior in acidic and alkaline media. The HEOC exhibits a practically high current of 1 A cm−2 at cell voltages of 1.78 and 1.89 V and long-term stability for 100 h in proton and anion exchange membrane water electrolyzers, respectively.
期刊介绍:
Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments.
With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology.
Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.