Gelatin-Induced Synthesis of Strain-Engineered Spherical Cu2O Nanoparticles for Efficient Nitrate Reduction to Ammonia

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-01-29 DOI:10.1002/smll.202411005
Ji Li, Kai Wu, Jing Heng, Lintao Zhu, Xuechuan Wang, Qingxin Han, Taotao Qiang
{"title":"Gelatin-Induced Synthesis of Strain-Engineered Spherical Cu2O Nanoparticles for Efficient Nitrate Reduction to Ammonia","authors":"Ji Li, Kai Wu, Jing Heng, Lintao Zhu, Xuechuan Wang, Qingxin Han, Taotao Qiang","doi":"10.1002/smll.202411005","DOIUrl":null,"url":null,"abstract":"The electrochemical reduction of nitrate to ammonia offers an environmentally sustainable pathway for nitrogen fixation. However, achieving both efficiency and selectivity in nitrate reduction presents a formidable challenge, due to the involvement of sluggish multielectron transfer processes. Herein, the successful synthesis of spherical Cu₂O nanoparticles (s-Cu₂O) exhibiting significant compressive strain effects, achieved through a one-pot method using gelatin as a structural modifier, is reported. The s-Cu₂O catalyst demonstrates exceptional electrochemical performance for nitrate reduction reaction (NO<sub>3</sub>RR), achieving a Faradaic efficiency (FE<sub>NH3</sub>) of 95.07%, ammonia selectivity of 92.03%, a nitrate conversion rate of 97.77%, and a yield rate of 284.83 µmol h⁻¹ cm⁻<sup>2</sup> at −0.8 V versus reversible hydrogen electrode (vs. RHE) for ammonia production. Structural characterization and density functional theory calculations reveal that compressive strain plays a critical role in modulating the electronic structure of the catalyst, thereby activating the *NO intermediate in the potential determining step and effectively suppressing the hydrogen evolution reaction. Furthermore, it is implemented in a Zn-NO<sub>3</sub><sup>−</sup> battery, and the test results indicate that the battery achieved a peak power density of 3.95 mW cm<sup>−2</sup> at a potential of 0.129 V (vs Zn/Zn<sup>2</sup>⁺), illustrating its excellent electrochemical and functional efficacy. This work introduces a novel strategy for the rational design of high-performance electrocatalysts through strain engineering, offering broad implications for energy-efficient ammonia synthesis, and sustainable nitrogen cycling.","PeriodicalId":228,"journal":{"name":"Small","volume":"25 1","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/smll.202411005","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electrochemical reduction of nitrate to ammonia offers an environmentally sustainable pathway for nitrogen fixation. However, achieving both efficiency and selectivity in nitrate reduction presents a formidable challenge, due to the involvement of sluggish multielectron transfer processes. Herein, the successful synthesis of spherical Cu₂O nanoparticles (s-Cu₂O) exhibiting significant compressive strain effects, achieved through a one-pot method using gelatin as a structural modifier, is reported. The s-Cu₂O catalyst demonstrates exceptional electrochemical performance for nitrate reduction reaction (NO3RR), achieving a Faradaic efficiency (FENH3) of 95.07%, ammonia selectivity of 92.03%, a nitrate conversion rate of 97.77%, and a yield rate of 284.83 µmol h⁻¹ cm⁻2 at −0.8 V versus reversible hydrogen electrode (vs. RHE) for ammonia production. Structural characterization and density functional theory calculations reveal that compressive strain plays a critical role in modulating the electronic structure of the catalyst, thereby activating the *NO intermediate in the potential determining step and effectively suppressing the hydrogen evolution reaction. Furthermore, it is implemented in a Zn-NO3 battery, and the test results indicate that the battery achieved a peak power density of 3.95 mW cm−2 at a potential of 0.129 V (vs Zn/Zn2⁺), illustrating its excellent electrochemical and functional efficacy. This work introduces a novel strategy for the rational design of high-performance electrocatalysts through strain engineering, offering broad implications for energy-efficient ammonia synthesis, and sustainable nitrogen cycling.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信