Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Jiazheng Sun, Yanna Liu, Linlin Yao, Yunhe Guo, Chenxi Ma, Tongtong Xiang, Zheyu Cheng, Yamin Deng, Xianjun Xie, Guangbo Qu, Jianbo Shi, Guibin Jiang, Yanxin Wang
{"title":"Suspect and Nontarget Analysis of Per- and Polyfluoroalkyl Substances in Groundwater Underlying Different Land-Use Areas","authors":"Jiazheng Sun, Yanna Liu, Linlin Yao, Yunhe Guo, Chenxi Ma, Tongtong Xiang, Zheyu Cheng, Yamin Deng, Xianjun Xie, Guangbo Qu, Jianbo Shi, Guibin Jiang, Yanxin Wang","doi":"10.1021/acs.est.4c09020","DOIUrl":null,"url":null,"abstract":"Groundwater can be contaminated by PFAS emissions, yet research on the presence and associated risks of PFAS in groundwater underlying different land-use areas remains limited. Herein, high-resolution mass spectrometry-based suspect and nontarget analyses were performed to determine PFAS occurrence in groundwater samples obtained from a rural area, a planting region, and the vicinities of a pharmaceutical park, an airport, and an industrial park in Datong City, China. A total of 31 PFAS (16 emerging and 15 legacy PFAS) were identified, and the ΣPFAS concentrations ranged from 0.775 (rural area) to 80.7 ng/L (pharmaceutical park). In terms of the average concentration of ΣPFAS, legacy PFAS were predominant in rural groundwater, whereas emerging PFAS were predominant in the other four land-use areas. PFOA, PFDA, PFUnDA, and 6:2 FTS were detected in all groundwater samples. To further prioritize the risk of identified PFAS in groundwater, the detection frequency; concentration; and persistence, bioaccumulation, and toxicity attributes were adopted, which showed that high-risk compounds varied across different land-use areas. Our results further reveal the ubiquitous contamination of PFAS in groundwater environments, even in areas with limited human activity, and highlight the necessity of suspect and nontarget analysis for assessing PFAS exposure through groundwater.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"1 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09020","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Groundwater can be contaminated by PFAS emissions, yet research on the presence and associated risks of PFAS in groundwater underlying different land-use areas remains limited. Herein, high-resolution mass spectrometry-based suspect and nontarget analyses were performed to determine PFAS occurrence in groundwater samples obtained from a rural area, a planting region, and the vicinities of a pharmaceutical park, an airport, and an industrial park in Datong City, China. A total of 31 PFAS (16 emerging and 15 legacy PFAS) were identified, and the ΣPFAS concentrations ranged from 0.775 (rural area) to 80.7 ng/L (pharmaceutical park). In terms of the average concentration of ΣPFAS, legacy PFAS were predominant in rural groundwater, whereas emerging PFAS were predominant in the other four land-use areas. PFOA, PFDA, PFUnDA, and 6:2 FTS were detected in all groundwater samples. To further prioritize the risk of identified PFAS in groundwater, the detection frequency; concentration; and persistence, bioaccumulation, and toxicity attributes were adopted, which showed that high-risk compounds varied across different land-use areas. Our results further reveal the ubiquitous contamination of PFAS in groundwater environments, even in areas with limited human activity, and highlight the necessity of suspect and nontarget analysis for assessing PFAS exposure through groundwater.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信