{"title":"Nanoscale heat generation in a single Si nanowire","authors":"Jungkil Kim, Hoo-Cheol Lee, Hong-Gyu Park","doi":"10.1515/nanoph-2024-0604","DOIUrl":null,"url":null,"abstract":"We develop a nanoheater utilizing a single Si nanowire with a porous segment that produces localized heat. The 19-fold higher resistivity of the porous segment compared to the solid segment in the nanowire facilitates the substantial confinement of heat to the porous segment by Joule heating. The heat profiles of the nanowire are examined using scanning thermal microscopy, a direct thermal imaging technique. The profiles recorded along the longitudinal and cross-sectional axes of the nanowire reveal that heat is concentrated in the sub-micrometer region of the porous segment, whereas it is uniformly distributed along the whole axis of the homogeneous solid Si nanowire. Moreover, the HfO<jats:sub>2</jats:sub>-passivated nanowire device exhibits a temperature increase above 10 °C within a 0.4 × 1 μm<jats:sup>2</jats:sup> area, which is advantageous compared to the 3.3 °C increase observed in the hBN-passivated device. These point heaters demonstrate considerable potential for future applications in biomedical engineering and optoelectronics.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"36 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0604","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We develop a nanoheater utilizing a single Si nanowire with a porous segment that produces localized heat. The 19-fold higher resistivity of the porous segment compared to the solid segment in the nanowire facilitates the substantial confinement of heat to the porous segment by Joule heating. The heat profiles of the nanowire are examined using scanning thermal microscopy, a direct thermal imaging technique. The profiles recorded along the longitudinal and cross-sectional axes of the nanowire reveal that heat is concentrated in the sub-micrometer region of the porous segment, whereas it is uniformly distributed along the whole axis of the homogeneous solid Si nanowire. Moreover, the HfO2-passivated nanowire device exhibits a temperature increase above 10 °C within a 0.4 × 1 μm2 area, which is advantageous compared to the 3.3 °C increase observed in the hBN-passivated device. These point heaters demonstrate considerable potential for future applications in biomedical engineering and optoelectronics.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.