Haerin Jeong, Nu-Ri Park, Byoung Jun Park, Moohyuk Kim, Jin Tae Kim, Myung-Ki Kim
{"title":"Highly sensitive microdisk laser sensor for refractive index sensing via periodic meta-hole patterning","authors":"Haerin Jeong, Nu-Ri Park, Byoung Jun Park, Moohyuk Kim, Jin Tae Kim, Myung-Ki Kim","doi":"10.1515/nanoph-2024-0598","DOIUrl":null,"url":null,"abstract":"Microdisk lasers have emerged as compact on-chip optical sensors due to their small size, simple structure, and efficient lasing capabilities. However, conventional microdisk laser sensors face challenges in enhancing interactions with external analytes, as their energy remains predominantly confined within the laser material. In this study, we present a novel microdisk laser sensor incorporating periodic meta-hole patterning, designed to enhance external interaction while maintaining the integrity of the whispering gallery mode (WGM). Numerical simulations show that in an InGaAsP microdisk laser (5 μm diameter, 250 nm thickness), the WGM remains stable with periodic meta-holes (period <jats:italic>a</jats:italic> = 340 nm, diameter <jats:italic>d</jats:italic> < 0.4<jats:italic>a</jats:italic>), achieving a resonant wavelength near 1,500 nm. The inclusion of meta-holes led to a substantial improvement in sensitivity, reaching up to 100.8 nm/RIU – a 2.26-fold increase over nonpatterned microdisks. Experimental validation confirmed lasing in structures with a <jats:italic>d</jats:italic>/<jats:italic>a</jats:italic> ratio of 0.32, achieving a maximum sensitivity of 74.5 nm/RIU, which represents a 2.02-fold enhancement compared to nonpatterned designs. This advancement in microdisk laser design not only opens new possibilities for high-performance, miniaturized optical sensors but also holds significant potential for integration into next-generation on-chip sensing technologies.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"124 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0598","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Microdisk lasers have emerged as compact on-chip optical sensors due to their small size, simple structure, and efficient lasing capabilities. However, conventional microdisk laser sensors face challenges in enhancing interactions with external analytes, as their energy remains predominantly confined within the laser material. In this study, we present a novel microdisk laser sensor incorporating periodic meta-hole patterning, designed to enhance external interaction while maintaining the integrity of the whispering gallery mode (WGM). Numerical simulations show that in an InGaAsP microdisk laser (5 μm diameter, 250 nm thickness), the WGM remains stable with periodic meta-holes (period a = 340 nm, diameter d < 0.4a), achieving a resonant wavelength near 1,500 nm. The inclusion of meta-holes led to a substantial improvement in sensitivity, reaching up to 100.8 nm/RIU – a 2.26-fold increase over nonpatterned microdisks. Experimental validation confirmed lasing in structures with a d/a ratio of 0.32, achieving a maximum sensitivity of 74.5 nm/RIU, which represents a 2.02-fold enhancement compared to nonpatterned designs. This advancement in microdisk laser design not only opens new possibilities for high-performance, miniaturized optical sensors but also holds significant potential for integration into next-generation on-chip sensing technologies.
期刊介绍:
Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives.
The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.