Collision of high-resolution wide FOV metalens cameras and vision tasks

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shaoqi Li, Wangzhe Zhou, Yiyi Li, Zhechun Lu, Fen Zhao, Xin He, Xinpeng Jiang, Te Du, Zhaojian Zhang, Yuehua Deng, Shengru Zhou, Hengchang Nong, Yang Yu, Zhenfu Zhang, Yunxin Han, Sha Huang, Jiagui Wu, Huan Chen, Junbo Yang
{"title":"Collision of high-resolution wide FOV metalens cameras and vision tasks","authors":"Shaoqi Li, Wangzhe Zhou, Yiyi Li, Zhechun Lu, Fen Zhao, Xin He, Xinpeng Jiang, Te Du, Zhaojian Zhang, Yuehua Deng, Shengru Zhou, Hengchang Nong, Yang Yu, Zhenfu Zhang, Yunxin Han, Sha Huang, Jiagui Wu, Huan Chen, Junbo Yang","doi":"10.1515/nanoph-2024-0547","DOIUrl":null,"url":null,"abstract":"Metalenses, with their compact form factor and unique optical capabilities, hold tremendous potential for advancing computer vision applications. In this work, we propose a high-resolution, large field-of-view (FOV) metalens intelligent recognition system, combining the latest YOLO framework, aimed at supporting a range of vision tasks. Specifically, we demonstrate its effectiveness in scanning, pose recognition, and object classification. The metalens we designed to achieve a 100° FOV while operating near the diffraction limit, as confirmed by experimental results. Moreover, the metalenses weigh only 0.1 g and occupy a compact volume of 0.04 cm<jats:sup>3</jats:sup>, effectively addressing the bulkiness of conventional lenses and overcoming the limitations of traditional metalens in spatial frequency transmission. This work highlights the transformative potential of metalenses in the field of computer vision, The integration of metalenses with computer vision opens exciting possibilities for next-generation imaging systems, offering both enhanced functionality and unprecedented miniaturization.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"30 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0547","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Metalenses, with their compact form factor and unique optical capabilities, hold tremendous potential for advancing computer vision applications. In this work, we propose a high-resolution, large field-of-view (FOV) metalens intelligent recognition system, combining the latest YOLO framework, aimed at supporting a range of vision tasks. Specifically, we demonstrate its effectiveness in scanning, pose recognition, and object classification. The metalens we designed to achieve a 100° FOV while operating near the diffraction limit, as confirmed by experimental results. Moreover, the metalenses weigh only 0.1 g and occupy a compact volume of 0.04 cm3, effectively addressing the bulkiness of conventional lenses and overcoming the limitations of traditional metalens in spatial frequency transmission. This work highlights the transformative potential of metalenses in the field of computer vision, The integration of metalenses with computer vision opens exciting possibilities for next-generation imaging systems, offering both enhanced functionality and unprecedented miniaturization.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信