Leonardo G. Engler, Marina Della Giustina, Marcelo Giovanela, Mariana Roesch-Ely, Noel Gately, Ian Major, Janaina S. Crespo, Declan M. Devine
{"title":"Exploring the Synergy of Metallic Antimicrobial Agents in Ternary Blends of PHB/PLA/PCL","authors":"Leonardo G. Engler, Marina Della Giustina, Marcelo Giovanela, Mariana Roesch-Ely, Noel Gately, Ian Major, Janaina S. Crespo, Declan M. Devine","doi":"10.1002/jbm.a.37857","DOIUrl":null,"url":null,"abstract":"<p>This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO<sub>2</sub>/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO<sub>2</sub> exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers. Scanning electron microscopy (SEM) analysis revealed a matrix–core–shell structure, indicating enhanced interfacial interaction among the immiscible biopolymers, as predicted by their spreading coefficient. From thermal evaluations, PCL promotes overall thermal stability, where T<sub>5</sub> (the temperature at which the sample loses 5% of its weight through thermal degradation) was more than 22% higher than <i>T</i><sub>5</sub> of blends, and the antimicrobials investigated tend to act as barriers to heat penetration, thereby influencing the degradation mechanism of the blends. Additionally, antimicrobials tend to increase material crystallinity, suggesting their nucleating effect. Both PLA and PCL have shown high viability for cell growth and proliferation. The 30/50/20 (PHB/PLA/PCL wt%) blends were conducive to cell adhesion and proliferation, achieving cell viability rates up to 85% irrespective of the antimicrobial concentration. SEM analysis also confirmed the presence of viable cells and attachment of organic cell structures over the surface of the produced materials. In conclusion, this study highlights the potential of biodegradable ternary blends containing antimicrobial NPs, particularly for use in medical devices such as ureteral stents.</p>","PeriodicalId":15142,"journal":{"name":"Journal of biomedical materials research. Part A","volume":"113 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jbm.a.37857","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomedical materials research. Part A","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbm.a.37857","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study provides a comprehensive investigation of antimicrobial additives (ZnO/AgNPs and SiO2/AgNPs) on the properties of biodegradable ternary blends composed of poly(hydroxybutyrate) (PHB), poly(lactic acid) (PLA), and polycaprolactone (PCL) by examining the morphology, thermal stability, crystallinity index, and cell viability of these blends. Overall, transmission electron microscopy (TEM) analysis revealed that AgNPs and SiO2 exhibited comparable sizes, whereas ZnO was significantly larger, which influences their release profiles and interactions with the blends. The addition of antimicrobials influences the rheology of the blends, acting as compatibilizers by reducing the intermolecular forces between biopolymers. Scanning electron microscopy (SEM) analysis revealed a matrix–core–shell structure, indicating enhanced interfacial interaction among the immiscible biopolymers, as predicted by their spreading coefficient. From thermal evaluations, PCL promotes overall thermal stability, where T5 (the temperature at which the sample loses 5% of its weight through thermal degradation) was more than 22% higher than T5 of blends, and the antimicrobials investigated tend to act as barriers to heat penetration, thereby influencing the degradation mechanism of the blends. Additionally, antimicrobials tend to increase material crystallinity, suggesting their nucleating effect. Both PLA and PCL have shown high viability for cell growth and proliferation. The 30/50/20 (PHB/PLA/PCL wt%) blends were conducive to cell adhesion and proliferation, achieving cell viability rates up to 85% irrespective of the antimicrobial concentration. SEM analysis also confirmed the presence of viable cells and attachment of organic cell structures over the surface of the produced materials. In conclusion, this study highlights the potential of biodegradable ternary blends containing antimicrobial NPs, particularly for use in medical devices such as ureteral stents.
期刊介绍:
The Journal of Biomedical Materials Research Part A is an international, interdisciplinary, English-language publication of original contributions concerning studies of the preparation, performance, and evaluation of biomaterials; the chemical, physical, toxicological, and mechanical behavior of materials in physiological environments; and the response of blood and tissues to biomaterials. The Journal publishes peer-reviewed articles on all relevant biomaterial topics including the science and technology of alloys,polymers, ceramics, and reprocessed animal and human tissues in surgery,dentistry, artificial organs, and other medical devices. The Journal also publishes articles in interdisciplinary areas such as tissue engineering and controlled release technology where biomaterials play a significant role in the performance of the medical device.
The Journal of Biomedical Materials Research is the official journal of the Society for Biomaterials (USA), the Japanese Society for Biomaterials, the Australasian Society for Biomaterials, and the Korean Society for Biomaterials.
Articles are welcomed from all scientists. Membership in the Society for Biomaterials is not a prerequisite for submission.