[Bioinformatics and animal experiments reveal mechanism of Linggui Zhugan Decoction in ameliorating chronic heart failure after myocardial infarction via HIF-1α/HO-1 signaling pathway].

Q3 Pharmacology, Toxicology and Pharmaceutics
Han Ren, Shu-Shu Wang, Wan-Zhu Zhao, Shao-Hua Xu, Ke-Dong Wei, Wan-Wan Wu, Sheng-Yi Huang, Rui Cai, Yuan-Hong Zhang, Jin-Ling Huang
{"title":"[Bioinformatics and animal experiments reveal mechanism of Linggui Zhugan Decoction in ameliorating chronic heart failure after myocardial infarction via HIF-1α/HO-1 signaling pathway].","authors":"Han Ren, Shu-Shu Wang, Wan-Zhu Zhao, Shao-Hua Xu, Ke-Dong Wei, Wan-Wan Wu, Sheng-Yi Huang, Rui Cai, Yuan-Hong Zhang, Jin-Ling Huang","doi":"10.19540/j.cnki.cjcmm.20240718.401","DOIUrl":null,"url":null,"abstract":"<p><p>This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a &quot;drug-component-target&quot; network. The protein-protein interaction(PPI) network analysis was performed on STRING. R language was used for Gene Ontology(GO) and Kyoto Encycloperfia of Genes and Genomes(KEGG) enrichment analyses. Molecular docking was adopted to validate the core targets. The mouse model of MI-induced CHF was established by surgical ligation of the left anterior descending coronary artery. The modeled mice were assigned into the sham, model, low-, medium-, and high-dose(2.34, 4.68, and 9.36 g·kg~(-1), respectively) LGZGD, and captopril(3.25 mg·kg~(-1)) groups. After continuous administration for 6 weeks, a Doppler ultrasound imaging system was used to examine the heart function indicators: left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), left ventricular end-systolic dimension(LVIDs), and left ventricular end-diastolic dimension(LVIDd). The myocardial tissue was stained with hematoxylin-eosin for the observation of morphological changes. The mRNA levels of microtubule-associated protein 1 light chain 3 beta(LC3B), Beclin1, p62, HIF-1α, and HO-1 in the myocardial tissue were determined by RT-qPCR. The protein levels of LC3B, beclin1, p62, autophagy-related protein 5(ATG5), HIF-1α, and HO-1 were determined by Western blot. The results showed that 103 active components of LGZGD, corresponding to 224 targets, were obtained. A total of 3 485 and 6 165 targets related to MI and CHF, respectively, were retrieved. The GSE16499 dataset obtained 3 263 differentially expressed genes. There were 31 common targets. The top 3 core active components were quercetin, naringenin, and 1-methoxyphaseollidin. The topology analysis results showed that the core targets were MAPK3, HMOX1(HO-1), MYC, ADRB2, PPARD, and HIF1A(HIF-1α). The molecular docking results showed strong binding between the core targets and the main active components of LGZGD. LGZGD significantly improved the heart function and alleviated the pathological changes in the myocardial tissue of mice. Western blot and RT-qPCR results showed that the HIF-1α/HO-1 signaling pathway and autophagy were activated in the model group. LGZGD up-regulated the levels of LC3B, Beclin1, ATG5, HIF-1α, and HO-1 while down-regulating the mRNA and protein levels of p62. In summary, LGZGD can enhance autophagy and improve the heart function in the mouse model of CHF after MI by upregulating the HIF-1α/HO-1 signaling pathway.</p>","PeriodicalId":52437,"journal":{"name":"Zhongguo Zhongyao Zazhi","volume":"49 23","pages":"6407-6416"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zhongguo Zhongyao Zazhi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19540/j.cnki.cjcmm.20240718.401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to investigate the effect of Linggui Zhugan Decoction(LGZGD) on autophagy in the mouse model of chronic heart failure(CHF) induced by myocardial infarction(MI), as well as the regulatory effect of LGZGD on the hypoxia-inducible factor-1α(HIF-1α)/heme oxygenase-1(HO-1) signaling pathway, based on bioinformatics and animal experiments. The active ingredients and corresponding targets of LGZGD were retrieved from the Traditional Chinese Medicine Systems Pharmacology and Analysis Database, and GEO, GeneCards, and DisGeNET were searched for the disease targets. Cytoscape was used to establish a "drug-component-target" network. The protein-protein interaction(PPI) network analysis was performed on STRING. R language was used for Gene Ontology(GO) and Kyoto Encycloperfia of Genes and Genomes(KEGG) enrichment analyses. Molecular docking was adopted to validate the core targets. The mouse model of MI-induced CHF was established by surgical ligation of the left anterior descending coronary artery. The modeled mice were assigned into the sham, model, low-, medium-, and high-dose(2.34, 4.68, and 9.36 g·kg~(-1), respectively) LGZGD, and captopril(3.25 mg·kg~(-1)) groups. After continuous administration for 6 weeks, a Doppler ultrasound imaging system was used to examine the heart function indicators: left ventricular ejection fraction(LVEF), left ventricular fractional shortening(LVFS), left ventricular end-systolic dimension(LVIDs), and left ventricular end-diastolic dimension(LVIDd). The myocardial tissue was stained with hematoxylin-eosin for the observation of morphological changes. The mRNA levels of microtubule-associated protein 1 light chain 3 beta(LC3B), Beclin1, p62, HIF-1α, and HO-1 in the myocardial tissue were determined by RT-qPCR. The protein levels of LC3B, beclin1, p62, autophagy-related protein 5(ATG5), HIF-1α, and HO-1 were determined by Western blot. The results showed that 103 active components of LGZGD, corresponding to 224 targets, were obtained. A total of 3 485 and 6 165 targets related to MI and CHF, respectively, were retrieved. The GSE16499 dataset obtained 3 263 differentially expressed genes. There were 31 common targets. The top 3 core active components were quercetin, naringenin, and 1-methoxyphaseollidin. The topology analysis results showed that the core targets were MAPK3, HMOX1(HO-1), MYC, ADRB2, PPARD, and HIF1A(HIF-1α). The molecular docking results showed strong binding between the core targets and the main active components of LGZGD. LGZGD significantly improved the heart function and alleviated the pathological changes in the myocardial tissue of mice. Western blot and RT-qPCR results showed that the HIF-1α/HO-1 signaling pathway and autophagy were activated in the model group. LGZGD up-regulated the levels of LC3B, Beclin1, ATG5, HIF-1α, and HO-1 while down-regulating the mRNA and protein levels of p62. In summary, LGZGD can enhance autophagy and improve the heart function in the mouse model of CHF after MI by upregulating the HIF-1α/HO-1 signaling pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Zhongguo Zhongyao Zazhi
Zhongguo Zhongyao Zazhi Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
CiteScore
1.50
自引率
0.00%
发文量
581
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信