A simple polydopamine-based platform for engineering extracellular vesicles with brain-targeting peptide and imaging probes to improve stroke outcome

IF 15.5 1区 医学 Q1 CELL BIOLOGY
Xiaojing Shi, Lu Zhang, Shengju Wu, Chunfu Zhang, Muyassar Mamtilahun, Yongfang Li, Zhijun Zhang, Changjing Zuo, Fengzhen Cui, Wanlu Li, Guo-Yuan Yang, Yaohui Tang
{"title":"A simple polydopamine-based platform for engineering extracellular vesicles with brain-targeting peptide and imaging probes to improve stroke outcome","authors":"Xiaojing Shi,&nbsp;Lu Zhang,&nbsp;Shengju Wu,&nbsp;Chunfu Zhang,&nbsp;Muyassar Mamtilahun,&nbsp;Yongfang Li,&nbsp;Zhijun Zhang,&nbsp;Changjing Zuo,&nbsp;Fengzhen Cui,&nbsp;Wanlu Li,&nbsp;Guo-Yuan Yang,&nbsp;Yaohui Tang","doi":"10.1002/jev2.70031","DOIUrl":null,"url":null,"abstract":"<p>Extracellular vesicles (EVs) have shown great potential for treating various diseases. Translating EVs-based therapy from bench to bedside remains challenging due to inefficient delivery of EVs to the injured area and lack of techniques to visualize the entire targeting process. Here we developed a dopamine surface functionalization platform that facilitates easy and simultaneous conjugation of targeting peptide and multi-mode imaging probes to the surface of EVs. Utilizing this platform we concurrently modified M2 microglia-derived EVs (M2-EVs) with neuronal targeting peptide rabies virus glycoprotein peptide 29 (RVG29) and multi-modal imaging tracers, resulting in the targeted delivery of M2-EVs to stroke mice brain and enabled the dynamic visualization of the targeting process from whole-body to cellular levels. We determined that intra-arterial injection achieved the highest efficiency of targeted delivery of engineered EVs to the stroke mice brain, improved therapeutic efficacy by reducing neuronal apoptosis. Mechanistically, EVs miRNA array revealed that a number of anti-apoptosis related miRNAs were significantly up-regulated, including miR-221-3p and miR-423-3p, both exerted anti-apoptotic effects through p38/ERK signalling pathways in stroke. Overall, this platform provides a facile and powerful tool for multifunctional engineering of EVs for multiscale therapeutic evaluation and enhancement of EV-based therapy, with valuable prospects for clinical translation.</p>","PeriodicalId":15811,"journal":{"name":"Journal of Extracellular Vesicles","volume":"14 1","pages":""},"PeriodicalIF":15.5000,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11714163/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Extracellular Vesicles","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jev2.70031","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Extracellular vesicles (EVs) have shown great potential for treating various diseases. Translating EVs-based therapy from bench to bedside remains challenging due to inefficient delivery of EVs to the injured area and lack of techniques to visualize the entire targeting process. Here we developed a dopamine surface functionalization platform that facilitates easy and simultaneous conjugation of targeting peptide and multi-mode imaging probes to the surface of EVs. Utilizing this platform we concurrently modified M2 microglia-derived EVs (M2-EVs) with neuronal targeting peptide rabies virus glycoprotein peptide 29 (RVG29) and multi-modal imaging tracers, resulting in the targeted delivery of M2-EVs to stroke mice brain and enabled the dynamic visualization of the targeting process from whole-body to cellular levels. We determined that intra-arterial injection achieved the highest efficiency of targeted delivery of engineered EVs to the stroke mice brain, improved therapeutic efficacy by reducing neuronal apoptosis. Mechanistically, EVs miRNA array revealed that a number of anti-apoptosis related miRNAs were significantly up-regulated, including miR-221-3p and miR-423-3p, both exerted anti-apoptotic effects through p38/ERK signalling pathways in stroke. Overall, this platform provides a facile and powerful tool for multifunctional engineering of EVs for multiscale therapeutic evaluation and enhancement of EV-based therapy, with valuable prospects for clinical translation.

Abstract Image

一个简单的基于多多巴胺的平台,用于工程细胞外囊泡与脑靶向肽和成像探针,以改善卒中预后。
细胞外囊泡(EVs)在治疗多种疾病方面显示出巨大的潜力。将基于ev的治疗方法从实验室转移到床边仍然具有挑战性,因为ev无法有效地输送到受伤区域,并且缺乏可视化整个靶向过程的技术。在这里,我们开发了一个多巴胺表面功能化平台,可以方便地同时将靶向肽和多模式成像探针偶联到ev表面。利用这一平台,我们同时用神经元靶向肽狂犬病病毒糖蛋白肽29 (RVG29)和多模态成像示踪剂修饰M2小胶质细胞衍生的ev (M2- ev),实现了M2- ev靶向递送至脑卒中小鼠大脑,并实现了从全身到细胞水平的靶向过程的动态可视化。我们确定动脉内注射达到了将工程ev靶向递送到中风小鼠大脑的最高效率,通过减少神经元凋亡提高了治疗效果。在机制上,EVs miRNA阵列显示许多抗凋亡相关的miRNA显著上调,包括miR-221-3p和miR-423-3p,它们都通过p38/ERK信号通路在脑卒中中发挥抗凋亡作用。综上所述,该平台为ev的多功能工程提供了一个便捷而强大的工具,用于多尺度的治疗评估和增强ev为基础的治疗,具有重要的临床应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Extracellular Vesicles
Journal of Extracellular Vesicles Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
27.30
自引率
4.40%
发文量
115
审稿时长
12 weeks
期刊介绍: The Journal of Extracellular Vesicles is an open access research publication that focuses on extracellular vesicles, including microvesicles, exosomes, ectosomes, and apoptotic bodies. It serves as the official journal of the International Society for Extracellular Vesicles and aims to facilitate the exchange of data, ideas, and information pertaining to the chemistry, biology, and applications of extracellular vesicles. The journal covers various aspects such as the cellular and molecular mechanisms of extracellular vesicles biogenesis, technological advancements in their isolation, quantification, and characterization, the role and function of extracellular vesicles in biology, stem cell-derived extracellular vesicles and their biology, as well as the application of extracellular vesicles for pharmacological, immunological, or genetic therapies. The Journal of Extracellular Vesicles is widely recognized and indexed by numerous services, including Biological Abstracts, BIOSIS Previews, Chemical Abstracts Service (CAS), Current Contents/Life Sciences, Directory of Open Access Journals (DOAJ), Journal Citation Reports/Science Edition, Google Scholar, ProQuest Natural Science Collection, ProQuest SciTech Collection, SciTech Premium Collection, PubMed Central/PubMed, Science Citation Index Expanded, ScienceOpen, and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信