HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability.

IF 3.3 4区 医学 Q2 NEUROSCIENCES
Zhixiao Li, Rongjun Qian, Mengda Li, Juntao Li, Yongji Guo, Yuanhang Zhou, Chunxiao Ma
{"title":"HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability.","authors":"Zhixiao Li, Rongjun Qian, Mengda Li, Juntao Li, Yongji Guo, Yuanhang Zhou, Chunxiao Ma","doi":"10.1007/s12017-024-08826-w","DOIUrl":null,"url":null,"abstract":"<p><p>Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated. The real-time quantitative polymerase chain reaction (qPCR), western blotting (WB), and immunohistochemistry (IHC) were used to determine the expression levels of HERC5, ISG15, and SERBP1. Cell stemness was analyzed using a cell sphere formation assay. Colony formation and cell counting kit-8 (CCK-8) assays were performed to assess cell proliferation, Transwell assays used to evaluate cell migration and invasion, and flow cytometry was used to assess cell apoptosis after treatment with temozolomide. SERBP1 stability was assessed by a CHX chase assay. A co-immunoprecipitation (Co-IP) assay verified the binding of ISG15 and HERC5 onto SERBP1. Our results showed that HERC5 and ISG15 were highly expressed in GBM. HERC5 and ISG15 promoted the cell stemness of GBM, and increased cell proliferation, sphere formation, migration, invasion, and chemoresistance. Moreover, HERC5 and ISG15 played a synergistic role in promoting the cell stemness of GBM. We also found that HERC5/ISG15 promoted the stability of SERBP1, which also promoted the cell stemness of GBM. The tumor-promoting role of HERC5 and ISG15 was also confirmed in a subcutaneous xenograft tumor model. Collectively, HERC5/ISG15 was found to regulate GBM stemness and tumor progression by mediating SERBP1 protein stability. Our present study suggests a promising therapeutic target for GBM.</p>","PeriodicalId":19304,"journal":{"name":"NeuroMolecular Medicine","volume":"27 1","pages":"7"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroMolecular Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12017-024-08826-w","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated. The real-time quantitative polymerase chain reaction (qPCR), western blotting (WB), and immunohistochemistry (IHC) were used to determine the expression levels of HERC5, ISG15, and SERBP1. Cell stemness was analyzed using a cell sphere formation assay. Colony formation and cell counting kit-8 (CCK-8) assays were performed to assess cell proliferation, Transwell assays used to evaluate cell migration and invasion, and flow cytometry was used to assess cell apoptosis after treatment with temozolomide. SERBP1 stability was assessed by a CHX chase assay. A co-immunoprecipitation (Co-IP) assay verified the binding of ISG15 and HERC5 onto SERBP1. Our results showed that HERC5 and ISG15 were highly expressed in GBM. HERC5 and ISG15 promoted the cell stemness of GBM, and increased cell proliferation, sphere formation, migration, invasion, and chemoresistance. Moreover, HERC5 and ISG15 played a synergistic role in promoting the cell stemness of GBM. We also found that HERC5/ISG15 promoted the stability of SERBP1, which also promoted the cell stemness of GBM. The tumor-promoting role of HERC5 and ISG15 was also confirmed in a subcutaneous xenograft tumor model. Collectively, HERC5/ISG15 was found to regulate GBM stemness and tumor progression by mediating SERBP1 protein stability. Our present study suggests a promising therapeutic target for GBM.

求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroMolecular Medicine
NeuroMolecular Medicine 医学-神经科学
CiteScore
7.10
自引率
0.00%
发文量
33
审稿时长
>12 weeks
期刊介绍: NeuroMolecular Medicine publishes cutting-edge original research articles and critical reviews on the molecular and biochemical basis of neurological disorders. Studies range from genetic analyses of human populations to animal and cell culture models of neurological disorders. Emerging findings concerning the identification of genetic aberrancies and their pathogenic mechanisms at the molecular and cellular levels will be included. Also covered are experimental analyses of molecular cascades involved in the development and adult plasticity of the nervous system, in neurological dysfunction, and in neuronal degeneration and repair. NeuroMolecular Medicine encompasses basic research in the fields of molecular genetics, signal transduction, plasticity, and cell death. The information published in NEMM will provide a window into the future of molecular medicine for the nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信