Physiological, biochemical, apoptosis-linked gene expression, and histopathological insights in Nile catfish subjected to toxicity by magnetite nanogel.

IF 2.5 3区 农林科学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Yasmina K Mahmoud, Shaimaa A A Ahmed, Heba H Mahboub, Abdelwahab A Abdelwarith, Elsayed M Younis, Ahmed A Elnegiry, Sherif M Shawky, Sahar H Orabi, Sameh H Ismail, Simon J Davies, Mahmoud I M Darwish
{"title":"Physiological, biochemical, apoptosis-linked gene expression, and histopathological insights in Nile catfish subjected to toxicity by magnetite nanogel.","authors":"Yasmina K Mahmoud, Shaimaa A A Ahmed, Heba H Mahboub, Abdelwahab A Abdelwarith, Elsayed M Younis, Ahmed A Elnegiry, Sherif M Shawky, Sahar H Orabi, Sameh H Ismail, Simon J Davies, Mahmoud I M Darwish","doi":"10.1007/s10695-024-01420-8","DOIUrl":null,"url":null,"abstract":"<p><p>The target of this novel work is to assess the immunosuppression, genotoxicity, histopathological alterations, and cumulative mortality induced by acute toxicity of magnetite nanogel (MNG) in Nile catfish. Furthermore, a subsequent 10-day depuration period is adopted to estimate the restoration of those disturbed indices. Nile catfish (n = 180) were allotted into four groups and exposed to different concentrations of MNG (0, 1/10, 1/8, and 1/5 96-h LC<sub>50</sub>). The outcomes displayed a remarkable concentration-dependent decline in the immune indices level (LYZ, NO, and MPO). The gene expression of antioxidant (SOD) and apoptosis-regulatory genes (MAPK3 and JNK) was upregulated in MNG-exposed fish. Histopathological disruptions in the tissue architecture of gills and intestines were also evident in MNG-exposed groups. Interestingly, after a 10-day depuration period, marked improvement in the level of immune response mediators and gene expression of apoptotic genes was evident in all experimental groups, particularly at 1/10 of LC<sub>50</sub>. Overall, exposure to higher concentrations of MNG (1/5 and 1/8 of LC<sub>50</sub>) exerts multiple adverse influences on the Nile catfish, which were less pronounced at 1/10 of LC<sub>50</sub>. Surprisingly, a subsequent 10-day recuperation time was adequate for alleviating those impairments, with the maximum improvement in the Nile catfish exposed to 1/10 of LC<sub>50</sub>.</p>","PeriodicalId":12274,"journal":{"name":"Fish Physiology and Biochemistry","volume":"51 1","pages":"31"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fish Physiology and Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10695-024-01420-8","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The target of this novel work is to assess the immunosuppression, genotoxicity, histopathological alterations, and cumulative mortality induced by acute toxicity of magnetite nanogel (MNG) in Nile catfish. Furthermore, a subsequent 10-day depuration period is adopted to estimate the restoration of those disturbed indices. Nile catfish (n = 180) were allotted into four groups and exposed to different concentrations of MNG (0, 1/10, 1/8, and 1/5 96-h LC50). The outcomes displayed a remarkable concentration-dependent decline in the immune indices level (LYZ, NO, and MPO). The gene expression of antioxidant (SOD) and apoptosis-regulatory genes (MAPK3 and JNK) was upregulated in MNG-exposed fish. Histopathological disruptions in the tissue architecture of gills and intestines were also evident in MNG-exposed groups. Interestingly, after a 10-day depuration period, marked improvement in the level of immune response mediators and gene expression of apoptotic genes was evident in all experimental groups, particularly at 1/10 of LC50. Overall, exposure to higher concentrations of MNG (1/5 and 1/8 of LC50) exerts multiple adverse influences on the Nile catfish, which were less pronounced at 1/10 of LC50. Surprisingly, a subsequent 10-day recuperation time was adequate for alleviating those impairments, with the maximum improvement in the Nile catfish exposed to 1/10 of LC50.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Fish Physiology and Biochemistry
Fish Physiology and Biochemistry 农林科学-生化与分子生物学
CiteScore
5.60
自引率
6.90%
发文量
106
审稿时长
4 months
期刊介绍: Fish Physiology and Biochemistry is an international journal publishing original research papers in all aspects of the physiology and biochemistry of fishes. Coverage includes experimental work in such topics as biochemistry of organisms, organs, tissues and cells; structure of organs, tissues, cells and organelles related to their function; nutritional, osmotic, ionic, respiratory and excretory homeostasis; nerve and muscle physiology; endocrinology; reproductive physiology; energetics; biochemical and physiological effects of toxicants; molecular biology and biotechnology and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信