Distribution and Biological Response of Nanoplastics in Constructed Wetland Microcosms: Mechanistic Insights into the Role of Photoaging

IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Cai Liu, Zehui Yang, Xuesong Cao, Chuanxi Wang, Le Yue, Xiaona Li, Zhenyu Wang, Baoshan Xing
{"title":"Distribution and Biological Response of Nanoplastics in Constructed Wetland Microcosms: Mechanistic Insights into the Role of Photoaging","authors":"Cai Liu, Zehui Yang, Xuesong Cao, Chuanxi Wang, Le Yue, Xiaona Li, Zhenyu Wang, Baoshan Xing","doi":"10.1021/acs.est.4c09635","DOIUrl":null,"url":null,"abstract":"Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.05–50 mg/L were exposed to constructed wetland microcosms containing floating (<i>Eichhornia crassipes</i>) and submerged (<i>Vallisneria natans</i>) macrophytes. Results demonstrate that PS-Pd NPs’ concentration in surface water after 2–4 weeks of exposure was decreased by over 98.4% as compared with that in the 1st week. Photoaging enhanced the surface charge and colloidal stability of PS-Pd NPs, with a subsequent increase of the content of PS-Pd NPs in surface and middle layer water by 264.6 and 207.4%, respectively. Additionally, photoaging significantly enhanced the accumulation of PS-Pd NPs in <i>E. crassipes</i> roots by 6.9–65.0% and significantly decreased it in <i>V. natans</i> shoots by 59.7–123.0%. PS-Pd NPs inhibited the growth of <i>V. natans</i> by 43.8% at 50 mg/L. Mechanistically, PS-Pd NPs induced oxidative stress in <i>V. natans</i>, leading to the disruption of the metabolic pathway. Interestingly, PS-Pd NP exposure inhibited nitrification in wetland ecosystems due to the alteration of the related bacterial community (<i>Ellin6067</i> decreased by 13.19%). These findings deepen our understanding of the environmental fate and risk of plastic particles in wetland ecosystems.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"7 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c09635","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Concern over nanoplastic contamination of wetland ecosystems has been increasing. However, little is known about the effect of photoaging on the distribution and biological response of the nanoplastics. Here, palladium-labeled polystyrene nanoplastics (PS-Pd NPs) at 0.05–50 mg/L were exposed to constructed wetland microcosms containing floating (Eichhornia crassipes) and submerged (Vallisneria natans) macrophytes. Results demonstrate that PS-Pd NPs’ concentration in surface water after 2–4 weeks of exposure was decreased by over 98.4% as compared with that in the 1st week. Photoaging enhanced the surface charge and colloidal stability of PS-Pd NPs, with a subsequent increase of the content of PS-Pd NPs in surface and middle layer water by 264.6 and 207.4%, respectively. Additionally, photoaging significantly enhanced the accumulation of PS-Pd NPs in E. crassipes roots by 6.9–65.0% and significantly decreased it in V. natans shoots by 59.7–123.0%. PS-Pd NPs inhibited the growth of V. natans by 43.8% at 50 mg/L. Mechanistically, PS-Pd NPs induced oxidative stress in V. natans, leading to the disruption of the metabolic pathway. Interestingly, PS-Pd NP exposure inhibited nitrification in wetland ecosystems due to the alteration of the related bacterial community (Ellin6067 decreased by 13.19%). These findings deepen our understanding of the environmental fate and risk of plastic particles in wetland ecosystems.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信