Minglong Chen, Jie Cen, Qiangqiang Shi, Bing Shao, Jiajia Tan, Xianjun Ye, Zhihua He, Yang Liu, Guoying Zhang, Jinming Hu, Jianqiang Bao, Shiyong Liu
{"title":"Ultrasound-Enhanced Spleen-Targeted mRNA Delivery via Fluorinated PEGylated Lipid Nanoparticles for Immunotherapy","authors":"Minglong Chen, Jie Cen, Qiangqiang Shi, Bing Shao, Jiajia Tan, Xianjun Ye, Zhihua He, Yang Liu, Guoying Zhang, Jinming Hu, Jianqiang Bao, Shiyong Liu","doi":"10.1002/anie.202500878","DOIUrl":null,"url":null,"abstract":"Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection. Through liquid-to-gas phase transition, we enabled the controlled shedding of fluorinated PEG lipids from F-LNPs, facilitating cellular uptake, membrane fusion, and mRNA release. In vivo results demonstrated that US-assisted F-LNPs increased mRNA transfection approximately 4.0-fold in the spleen following intravenous administration. Notably, the F-LNPs achieved effective mRNA delivery to antigen-presenting cell subsets, such as dendritic cells, macrophages, and B cells. The targeted delivery of full-length ovalbumin-encoding mRNA vaccine induced significant CD8+ T cell response and exhibited excellent therapeutic effect against the ovalbumin-transduced B16F10 tumor model. These findings establish a novel strategy for spleen-specific mRNA delivery through the combination of fluorinated PEG lipids and US treatment, which holds substantial promise for enhancing the efficacy of immunotherapy, potentially broadening the scope of clinical applications for mRNA-based therapy.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection. Through liquid-to-gas phase transition, we enabled the controlled shedding of fluorinated PEG lipids from F-LNPs, facilitating cellular uptake, membrane fusion, and mRNA release. In vivo results demonstrated that US-assisted F-LNPs increased mRNA transfection approximately 4.0-fold in the spleen following intravenous administration. Notably, the F-LNPs achieved effective mRNA delivery to antigen-presenting cell subsets, such as dendritic cells, macrophages, and B cells. The targeted delivery of full-length ovalbumin-encoding mRNA vaccine induced significant CD8+ T cell response and exhibited excellent therapeutic effect against the ovalbumin-transduced B16F10 tumor model. These findings establish a novel strategy for spleen-specific mRNA delivery through the combination of fluorinated PEG lipids and US treatment, which holds substantial promise for enhancing the efficacy of immunotherapy, potentially broadening the scope of clinical applications for mRNA-based therapy.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.