Ultrasound-Enhanced Spleen-Targeted mRNA Delivery via Fluorinated PEGylated Lipid Nanoparticles for Immunotherapy

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Minglong Chen, Jie Cen, Qiangqiang Shi, Bing Shao, Jiajia Tan, Xianjun Ye, Zhihua He, Yang Liu, Guoying Zhang, Jinming Hu, Jianqiang Bao, Shiyong Liu
{"title":"Ultrasound-Enhanced Spleen-Targeted mRNA Delivery via Fluorinated PEGylated Lipid Nanoparticles for Immunotherapy","authors":"Minglong Chen, Jie Cen, Qiangqiang Shi, Bing Shao, Jiajia Tan, Xianjun Ye, Zhihua He, Yang Liu, Guoying Zhang, Jinming Hu, Jianqiang Bao, Shiyong Liu","doi":"10.1002/anie.202500878","DOIUrl":null,"url":null,"abstract":"Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection. Through liquid-to-gas phase transition, we enabled the controlled shedding of fluorinated PEG lipids from F-LNPs, facilitating cellular uptake, membrane fusion, and mRNA release. In vivo results demonstrated that US-assisted F-LNPs increased mRNA transfection approximately 4.0-fold in the spleen following intravenous administration. Notably, the F-LNPs achieved effective mRNA delivery to antigen-presenting cell subsets, such as dendritic cells, macrophages, and B cells. The targeted delivery of full-length ovalbumin-encoding mRNA vaccine induced significant CD8+ T cell response and exhibited excellent therapeutic effect against the ovalbumin-transduced B16F10 tumor model. These findings establish a novel strategy for spleen-specific mRNA delivery through the combination of fluorinated PEG lipids and US treatment, which holds substantial promise for enhancing the efficacy of immunotherapy, potentially broadening the scope of clinical applications for mRNA-based therapy.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"20 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202500878","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Lipid nanoparticles (LNPs) based messenger RNA (mRNA) therapeutics hold immense promise for treating a wide array of diseases, while their nonhepatic organs targeting and insufficient endosomal escape efficiency remain challenges. For LNPs, polyethylene glycol (PEG) lipids have a crucial role in stabilizing them in aqueous medium, but they severely hinder cellular uptake and reduce transfection efficiency. In this study, we designed ultrasound (US)-assisted fluorinated PEGylated LNPs (F-LNPs) to enhance spleen-targeted mRNA delivery and transfection. Through liquid-to-gas phase transition, we enabled the controlled shedding of fluorinated PEG lipids from F-LNPs, facilitating cellular uptake, membrane fusion, and mRNA release. In vivo results demonstrated that US-assisted F-LNPs increased mRNA transfection approximately 4.0-fold in the spleen following intravenous administration. Notably, the F-LNPs achieved effective mRNA delivery to antigen-presenting cell subsets, such as dendritic cells, macrophages, and B cells. The targeted delivery of full-length ovalbumin-encoding mRNA vaccine induced significant CD8+ T cell response and exhibited excellent therapeutic effect against the ovalbumin-transduced B16F10 tumor model. These findings establish a novel strategy for spleen-specific mRNA delivery through the combination of fluorinated PEG lipids and US treatment, which holds substantial promise for enhancing the efficacy of immunotherapy, potentially broadening the scope of clinical applications for mRNA-based therapy.
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信