SN2-Reaction-Driven Bonding-Heterointerface Strengthens Buried Adhesion and Orientation for Advanced Perovskite Solar Cells

IF 16.1 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Naimin Liu, Jialong Duan, Chenlong Zhang, Jinyue Zhang, Yueyang Bi, Linzheng Ma, Dongmei Xu, Jun Gao, Xingxing Duan, Jie Dou, Qiyao Guo, Benlin He, Yuanyuan Zhao, Qunwei Tang
{"title":"SN2-Reaction-Driven Bonding-Heterointerface Strengthens Buried Adhesion and Orientation for Advanced Perovskite Solar Cells","authors":"Naimin Liu, Jialong Duan, Chenlong Zhang, Jinyue Zhang, Yueyang Bi, Linzheng Ma, Dongmei Xu, Jun Gao, Xingxing Duan, Jie Dou, Qiyao Guo, Benlin He, Yuanyuan Zhao, Qunwei Tang","doi":"10.1002/anie.202424046","DOIUrl":null,"url":null,"abstract":"Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior. Benefiting from the suppressed nonradiative recombination, as a result, an all-air-processed carbon-based all-inorganic CsPbI2Br device achieves an enhanced efficiency of 15.14%, more importantly, with significantly prolonged long-term stability under harsh conditions. This unique reaction-driven buried interface provides a new path for manipulating perovskite growth and obtaining advanced perovskite photovoltaics.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"35 1","pages":""},"PeriodicalIF":16.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202424046","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Traditionally weak buried interaction without customized chemical bonding always goes against the formation of high-quality perovskite film that highly determines the efficiency and stability of perovskite solar cells. To address this issue, herein, we propose a bimolecular nucleophilic substitution reaction (SN2) driving strategy to idealize the robust buried interface by simultaneously decorating underlying substrate and functionalizing [PbX6]4- octahedral framework with iodoacetamide and thiol molecules, respectively. Theoretical and experimental results demonstrate that a strong SN2 reaction between exposed halogen and thiol group in two molecules occurs, which not only benefits the reinforcement of buried adhesion, but also triggers target-point-oriented crystallization, synergistically upgrading the upper perovskite film quality and accelerating interfacial charge extraction-transfer behavior. Benefiting from the suppressed nonradiative recombination, as a result, an all-air-processed carbon-based all-inorganic CsPbI2Br device achieves an enhanced efficiency of 15.14%, more importantly, with significantly prolonged long-term stability under harsh conditions. This unique reaction-driven buried interface provides a new path for manipulating perovskite growth and obtaining advanced perovskite photovoltaics.
SN2 反应驱动的键合-异质界面增强了先进过氧化物太阳能电池的埋入式粘附力和定向力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信