Poly(butylene succinate) filaments for fused deposition modelling (FDM) 3D-printing

IF 4.1 2区 化学 Q2 POLYMER SCIENCE
Yong Chen, Jielin Xu, Ye Chen, Chaosheng Wang, Huaping Wang, Jing Wu
{"title":"Poly(butylene succinate) filaments for fused deposition modelling (FDM) 3D-printing","authors":"Yong Chen, Jielin Xu, Ye Chen, Chaosheng Wang, Huaping Wang, Jing Wu","doi":"10.1039/d4py01351d","DOIUrl":null,"url":null,"abstract":"Polybutylene succinate (PBS) is an aliphatic degradable polyester prepared by melt polycondensation of succinic acid and 1,4-butanediol; the highly symmetrical molecular structure and linear polymerization monomer result in a polymer exhibiting rapid crystallization and low melt strength, limiting its fiber development and application in melt processing. In order to investigate the feasibility of using PBS as a printing consumable, in this work, a series of long-chain branched PBS filaments were synthesized by using branching agents including glycerol, diglycerol, pentaerythritol and di-pentaerythritol. The chemical structure of different branching agents significantly affects the crystallization properties of PBS polyesters. The branched structure disturbs the symmetry and regularity of the polymer and reduces the crystallization ability of the polymer. Chain topology was obtained through rheological investigations and the synthesized polymers showed a typical behavior of linear and branched PBS. The complex viscosity, storage modulus and loss modulus of long chain branched PBS at low frequency were significantly enhanced compared to those of linear PBS. To reduce the fluidity of the polymer, the melt strength of the polymer was increased by about 2.7 times. PBS filaments have been developed for the application of 3D-printing <em>via</em> fused deposition modeling (FDM), which provides a broader research field for PBS polymers.","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"49 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4py01351d","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Polybutylene succinate (PBS) is an aliphatic degradable polyester prepared by melt polycondensation of succinic acid and 1,4-butanediol; the highly symmetrical molecular structure and linear polymerization monomer result in a polymer exhibiting rapid crystallization and low melt strength, limiting its fiber development and application in melt processing. In order to investigate the feasibility of using PBS as a printing consumable, in this work, a series of long-chain branched PBS filaments were synthesized by using branching agents including glycerol, diglycerol, pentaerythritol and di-pentaerythritol. The chemical structure of different branching agents significantly affects the crystallization properties of PBS polyesters. The branched structure disturbs the symmetry and regularity of the polymer and reduces the crystallization ability of the polymer. Chain topology was obtained through rheological investigations and the synthesized polymers showed a typical behavior of linear and branched PBS. The complex viscosity, storage modulus and loss modulus of long chain branched PBS at low frequency were significantly enhanced compared to those of linear PBS. To reduce the fluidity of the polymer, the melt strength of the polymer was increased by about 2.7 times. PBS filaments have been developed for the application of 3D-printing via fused deposition modeling (FDM), which provides a broader research field for PBS polymers.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Polymer Chemistry
Polymer Chemistry POLYMER SCIENCE-
CiteScore
8.60
自引率
8.70%
发文量
535
审稿时长
1.7 months
期刊介绍: Polymer Chemistry welcomes submissions in all areas of polymer science that have a strong focus on macromolecular chemistry. Manuscripts may cover a broad range of fields, yet no direct application focus is required.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信