Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles

IF 3.7 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Geosmin Turpin, Duc Nguyen, Kathryn Isobel Sypkes, Christopher Vega-Sánchez, Tim Davey, Brian S. Hawkett, Chiara Neto
{"title":"Encapsulation of Oil Droplets Using Film-Forming Janus Nanoparticles","authors":"Geosmin Turpin, Duc Nguyen, Kathryn Isobel Sypkes, Christopher Vega-Sánchez, Tim Davey, Brian S. Hawkett, Chiara Neto","doi":"10.1021/acs.langmuir.4c03843","DOIUrl":null,"url":null,"abstract":"Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate-<i>co</i>-butyl acrylate) lobe were synthesized by reversible addition–fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5–500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt). In a microfluidic device, monodisperse capsules of diameter 180 μm could be formed. The particles were weakly surface-active and spontaneously assembled themselves at air/water interfaces. When added into a paint formula, the oil capsules improved the stain resistance of paint films. Silicone oil leakage from the capsules could be mitigated by incubating the capsules with silica nanoparticles, on which silicone oil reacts, creating grafted layers.","PeriodicalId":50,"journal":{"name":"Langmuir","volume":"4 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03843","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Polymer Janus nanoparticles with one hard cross-linked polystyrene lobe and one soft film-forming poly(methyl methacrylate-co-butyl acrylate) lobe were synthesized by reversible addition–fragmentation chain transfer (RAFT)-mediated emulsion polymerization. The Janus nanoparticles adsorbed to oil/water and air/water interfaces, where the soft lobes coalesced, forming films of thickness between 25 and 250 nm; droplets of silicone oil could be stably encapsulated in polymer in this way. When prepared by mechanical mixing without additives, capsules of diameter 5–500 μm could be prepared, and with additives and application of heat, capsules of diameter around 5 μm were achieved, even with highly viscous silicone oil (20,000 cSt). In a microfluidic device, monodisperse capsules of diameter 180 μm could be formed. The particles were weakly surface-active and spontaneously assembled themselves at air/water interfaces. When added into a paint formula, the oil capsules improved the stain resistance of paint films. Silicone oil leakage from the capsules could be mitigated by incubating the capsules with silica nanoparticles, on which silicone oil reacts, creating grafted layers.

Abstract Image

利用成膜 Janus 纳米粒子封装油滴
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信