Mitchell R. Vollger, Jonas Korlach, Kiara C. Eldred, Elliott Swanson, Jason G. Underwood, Stephanie C. Bohaczuk, Yizi Mao, Yong-Han H. Cheng, Jane Ranchalis, Elizabeth E. Blue, Ulrike Schwarze, Katherine M. Munson, Christopher T. Saunders, Aaron M. Wenger, Aimee Allworth, Sirisak Chanprasert, Brittney L. Duerden, Ian Glass, Martha Horike-Pyne, Michelle Kim, Kathleen A. Leppig, Ian J. McLaughlin, Jessica Ogawa, Elisabeth A. Rosenthal, Sam Sheppeard, Stephanie M. Sherman, Samuel Strohbehn, Amy L. Yuen, Andrew W. Stacey, Thomas A. Reh, Peter H. Byers, Michael J. Bamshad, Fuki M. Hisama, Gail P. Jarvik, Yasemin Sancak, Katrina M. Dipple, Andrew B. Stergachis
{"title":"Synchronized long-read genome, methylome, epigenome and transcriptome profiling resolve a Mendelian condition","authors":"Mitchell R. Vollger, Jonas Korlach, Kiara C. Eldred, Elliott Swanson, Jason G. Underwood, Stephanie C. Bohaczuk, Yizi Mao, Yong-Han H. Cheng, Jane Ranchalis, Elizabeth E. Blue, Ulrike Schwarze, Katherine M. Munson, Christopher T. Saunders, Aaron M. Wenger, Aimee Allworth, Sirisak Chanprasert, Brittney L. Duerden, Ian Glass, Martha Horike-Pyne, Michelle Kim, Kathleen A. Leppig, Ian J. McLaughlin, Jessica Ogawa, Elisabeth A. Rosenthal, Sam Sheppeard, Stephanie M. Sherman, Samuel Strohbehn, Amy L. Yuen, Andrew W. Stacey, Thomas A. Reh, Peter H. Byers, Michael J. Bamshad, Fuki M. Hisama, Gail P. Jarvik, Yasemin Sancak, Katrina M. Dipple, Andrew B. Stergachis","doi":"10.1038/s41588-024-02067-0","DOIUrl":null,"url":null,"abstract":"<p>Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion–deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network participant with a chromosome X;13-balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (<i>NBEA</i>, <i>PDK3</i>, <i>MAB21L1</i> and <i>RB1</i>) previously associated with single-gene Mendelian conditions. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four ‘omes’ to resolve. These included fusion transcript formation, enhancer adoption, transcriptional readthrough silencing and inappropriate X-chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.</p>","PeriodicalId":18985,"journal":{"name":"Nature genetics","volume":"36 1","pages":""},"PeriodicalIF":31.7000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41588-024-02067-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Resolving the molecular basis of a Mendelian condition remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion–deletion and structural variant calling and diploid de novo genome assembly. This permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network participant with a chromosome X;13-balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1 and RB1) previously associated with single-gene Mendelian conditions. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four ‘omes’ to resolve. These included fusion transcript formation, enhancer adoption, transcriptional readthrough silencing and inappropriate X-chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.
期刊介绍:
Nature Genetics publishes the very highest quality research in genetics. It encompasses genetic and functional genomic studies on human and plant traits and on other model organisms. Current emphasis is on the genetic basis for common and complex diseases and on the functional mechanism, architecture and evolution of gene networks, studied by experimental perturbation.
Integrative genetic topics comprise, but are not limited to:
-Genes in the pathology of human disease
-Molecular analysis of simple and complex genetic traits
-Cancer genetics
-Agricultural genomics
-Developmental genetics
-Regulatory variation in gene expression
-Strategies and technologies for extracting function from genomic data
-Pharmacological genomics
-Genome evolution