Thermogravimetric data suggest synergy between different organic fractions and clay in soil structure formation

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE
Ivan Šimkovic, Andrej Hrabovský, Adela Joanna Hamerníková, Silvia Ihnačáková, Pavel Dlapa
{"title":"Thermogravimetric data suggest synergy between different organic fractions and clay in soil structure formation","authors":"Ivan Šimkovic,&nbsp;Andrej Hrabovský,&nbsp;Adela Joanna Hamerníková,&nbsp;Silvia Ihnačáková,&nbsp;Pavel Dlapa","doi":"10.1016/j.geoderma.2025.117166","DOIUrl":null,"url":null,"abstract":"<div><div>Although it has been recognized that soil structure formation affects soil organic carbon (SOC) sequestration, experimental data elucidating the relation between mechanical properties of soil structure and soil organic matter (SOM) stability are lacking. This study assesses the link between aggregate stability and SOM stability in lowland and hilly land soils of Central Europe. Overall, 39 topsoil samples were taken. Besides determining basic properties and nutrient availability, stability of soil aggregates was quantified using wet sieving (WS) and rainfall simulation (RS) procedures. The samples were analyzed by thermogravimetry and differential scanning calorimetry (TG-DSC). Besides significant correlations with basic soil properties and contents of selected nutrients, the aggregate stability data were linked to thermal processes, such as water desorption and SOM degradation. The RS values were significantly correlated (r &gt; 0.7, p &lt; 0.001) with the rate of water desorption (T &lt; 200 °C) and SOM degradation (200 – 570 °C). Observed correlation pattern, with multiple maxima, suggests that aggregate stability is supported by clay and several SOM fractions, each showing different thermal stability. Significant correlations observed bellow 200 °C indicate that properties controlling soil specific surface area (SOM and clay) are important also for the aggregate stability. The 78 % of the variance observed in aggregate stability testing was explained by multilinear regression using weight loss rates recorded at selected temperatures (80, 130, 248, 401 and 455 °C) as predictors. We observed different relations between exothermic energy values, soil aggregate stability and thermal stability of SOM (SOC). Exothermic heat flux normalized with respect to SOC mass (energy density) indicates presence of stable organic fraction, as it showed correlation also with clay, which has positive effect on SOC stabilization. This is in line with the positive correlation between SOC energy density and aggregate stability. On contrary, normalizing the heat with respect to SOM mass indicates the content of labile organic components, as the correlations with clay or aggregate stability were insignificant. The TG-DSC data revealed that hilly land soils are depleted in fresh organic material, which is due to their genesis and the erosion intensified by tillage.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"454 ","pages":"Article 117166"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000047","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Although it has been recognized that soil structure formation affects soil organic carbon (SOC) sequestration, experimental data elucidating the relation between mechanical properties of soil structure and soil organic matter (SOM) stability are lacking. This study assesses the link between aggregate stability and SOM stability in lowland and hilly land soils of Central Europe. Overall, 39 topsoil samples were taken. Besides determining basic properties and nutrient availability, stability of soil aggregates was quantified using wet sieving (WS) and rainfall simulation (RS) procedures. The samples were analyzed by thermogravimetry and differential scanning calorimetry (TG-DSC). Besides significant correlations with basic soil properties and contents of selected nutrients, the aggregate stability data were linked to thermal processes, such as water desorption and SOM degradation. The RS values were significantly correlated (r > 0.7, p < 0.001) with the rate of water desorption (T < 200 °C) and SOM degradation (200 – 570 °C). Observed correlation pattern, with multiple maxima, suggests that aggregate stability is supported by clay and several SOM fractions, each showing different thermal stability. Significant correlations observed bellow 200 °C indicate that properties controlling soil specific surface area (SOM and clay) are important also for the aggregate stability. The 78 % of the variance observed in aggregate stability testing was explained by multilinear regression using weight loss rates recorded at selected temperatures (80, 130, 248, 401 and 455 °C) as predictors. We observed different relations between exothermic energy values, soil aggregate stability and thermal stability of SOM (SOC). Exothermic heat flux normalized with respect to SOC mass (energy density) indicates presence of stable organic fraction, as it showed correlation also with clay, which has positive effect on SOC stabilization. This is in line with the positive correlation between SOC energy density and aggregate stability. On contrary, normalizing the heat with respect to SOM mass indicates the content of labile organic components, as the correlations with clay or aggregate stability were insignificant. The TG-DSC data revealed that hilly land soils are depleted in fresh organic material, which is due to their genesis and the erosion intensified by tillage.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信