Joséphine Hazera, Isabelle Kowalewski, David Sebag, Eric Verrecchia, Herman Ravelojaona, Tiphaine Chevallier
{"title":"Coupling Infrared Isotopic Gas Analysis and Thermal Ramped Analysis to Characterise Soil Organic and Inorganic Carbon","authors":"Joséphine Hazera, Isabelle Kowalewski, David Sebag, Eric Verrecchia, Herman Ravelojaona, Tiphaine Chevallier","doi":"10.1111/ejss.70041","DOIUrl":null,"url":null,"abstract":"<p>Studying the soil organic and inorganic carbon (SOC and SIC) dynamics is essential to assess the carbon (C) sequestration potential of calcareous soils. Isotopic signatures (δ<sup>13</sup>C) are used to assess the C origin of SOC or SIC. However, as measuring SOC and SIC contents, measuring δ<sup>13</sup>C<sub>SOC</sub> and δ<sup>13</sup>C<sub>SIC</sub> on a non-pretreated aliquot remains a challenge. Thermal analyses, like the Rock-Eval (RE) analysis, are promising to quantify SOC and SIC in a single analysis, but, to our knowledge, no development was conducted to assess δ<sup>13</sup>C<sub>SOC</sub> and δ<sup>13</sup>C<sub>SIC</sub>. We coupled a RE device to an isotopic gas analyser (Picarro) to continuously measure δ<sup>13</sup>C<sub>CO2</sub> and approach δ<sup>13</sup>C<sub>SOC</sub> and δ<sup>13</sup>C<sub>SIC</sub>. We hypothesised that different carbonate mineralogies and/or crystal sizes in SIC involve fluctuations of the δ<sup>13</sup>C<sub>CO2</sub>. Two calcareous soils, a lithogenic (calcite) and a biogenic (snail shell) carbonate, and five calcite/shell mixes were analysed with the RE-Picarro setup. Two distinct δ<sup>13</sup>C<sub>CO2</sub> values were obtained before and after 650°C and were consistent with the δ<sup>13</sup>C<sub>SOC</sub> and δ<sup>13</sup>C<sub>SIC</sub> obtained by EA-IRMS. The fluctuations of δ<sup>13</sup>C<sub>CO2</sub> above 650°C were higher with calcite/shell mixes than with pure carbonates. A δ<sup>13</sup>C<sub>CO2</sub> fluctuation > ± 0.2‰ could be a pertinent indicator to detect mixes of carbonate with different δ<sup>13</sup>C in soils. The RE-Picarro setup is promising to assess SOC and SIC contents, δ<sup>13</sup>C<sub>SOC</sub> and δ<sup>13</sup>C<sub>SIC</sub> and detect mixes of carbonate with different origin on a non-pretreated aliquot. Development is needed (i) on more soil and carbonate samples and (ii) to improve the precision and accuracy of the RE-Picarro setup.</p>","PeriodicalId":12043,"journal":{"name":"European Journal of Soil Science","volume":"76 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/ejss.70041","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Science","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ejss.70041","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Studying the soil organic and inorganic carbon (SOC and SIC) dynamics is essential to assess the carbon (C) sequestration potential of calcareous soils. Isotopic signatures (δ13C) are used to assess the C origin of SOC or SIC. However, as measuring SOC and SIC contents, measuring δ13CSOC and δ13CSIC on a non-pretreated aliquot remains a challenge. Thermal analyses, like the Rock-Eval (RE) analysis, are promising to quantify SOC and SIC in a single analysis, but, to our knowledge, no development was conducted to assess δ13CSOC and δ13CSIC. We coupled a RE device to an isotopic gas analyser (Picarro) to continuously measure δ13CCO2 and approach δ13CSOC and δ13CSIC. We hypothesised that different carbonate mineralogies and/or crystal sizes in SIC involve fluctuations of the δ13CCO2. Two calcareous soils, a lithogenic (calcite) and a biogenic (snail shell) carbonate, and five calcite/shell mixes were analysed with the RE-Picarro setup. Two distinct δ13CCO2 values were obtained before and after 650°C and were consistent with the δ13CSOC and δ13CSIC obtained by EA-IRMS. The fluctuations of δ13CCO2 above 650°C were higher with calcite/shell mixes than with pure carbonates. A δ13CCO2 fluctuation > ± 0.2‰ could be a pertinent indicator to detect mixes of carbonate with different δ13C in soils. The RE-Picarro setup is promising to assess SOC and SIC contents, δ13CSOC and δ13CSIC and detect mixes of carbonate with different origin on a non-pretreated aliquot. Development is needed (i) on more soil and carbonate samples and (ii) to improve the precision and accuracy of the RE-Picarro setup.
期刊介绍:
The EJSS is an international journal that publishes outstanding papers in soil science that advance the theoretical and mechanistic understanding of physical, chemical and biological processes and their interactions in soils acting from molecular to continental scales in natural and managed environments.