Alena S. Gsell, Sven Teurlincx, Marta M. Alirangues Nuñez, Sabine Hilt
{"title":"Epiphyton phenology determines the persistence of submerged macrophytes: Exemplified in temperate shallow lakes","authors":"Alena S. Gsell, Sven Teurlincx, Marta M. Alirangues Nuñez, Sabine Hilt","doi":"10.1002/lno.12808","DOIUrl":null,"url":null,"abstract":"Submerged macrophytes are key components in many freshwater and marine ecosystems, contributing to ecosystem functions and services. In temperate shallow lakes, spring epiphyton shading can be decisive for submerged macrophyte development, potentially leading to macrophyte collapse and a shift to undesired, turbid conditions. Global change can alter epiphyton phenology; however, the consequences for submerged macrophytes and their stabilizing effects on clear‐water conditions remain to be elucidated. Based on field data, we propose a general epiphyton shading phenology for submerged macrophytes in temperate shallow lake ecosystems. We express the temporal dynamics of epiphyton shading in terms of onset and relative increase (slope) of epiphyton development as well as epiphyton grazing impacts (onset, duration) using a Boltzmann function. This function is added to the ecosystem model PCLake+ as a customizable, macrophyte‐specific shading factor. We then assess how changes in the epiphyton phenology and the presence of grazing on epiphyton affects submerged macrophyte biomass in a generic temperate shallow model lake under control and warm winter scenarios. The results from the model provide a proof‐of‐concept that epiphyton shading can provoke macrophyte loss and shifts between alternative equilibria. Threshold values for critical shifts depend on epiphyton shading phenology. Earlier onset and longer duration of grazing can maintain macrophytes in nutrient or climate conditions under which they would otherwise collapse. Our results show the pivotal importance of epiphyton phenology in determining lake ecosystem‐wide responses stressing the need for better incorporation of epiphyton into both models and monitoring.","PeriodicalId":18143,"journal":{"name":"Limnology and Oceanography","volume":"7 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Limnology and Oceanography","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/lno.12808","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LIMNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Submerged macrophytes are key components in many freshwater and marine ecosystems, contributing to ecosystem functions and services. In temperate shallow lakes, spring epiphyton shading can be decisive for submerged macrophyte development, potentially leading to macrophyte collapse and a shift to undesired, turbid conditions. Global change can alter epiphyton phenology; however, the consequences for submerged macrophytes and their stabilizing effects on clear‐water conditions remain to be elucidated. Based on field data, we propose a general epiphyton shading phenology for submerged macrophytes in temperate shallow lake ecosystems. We express the temporal dynamics of epiphyton shading in terms of onset and relative increase (slope) of epiphyton development as well as epiphyton grazing impacts (onset, duration) using a Boltzmann function. This function is added to the ecosystem model PCLake+ as a customizable, macrophyte‐specific shading factor. We then assess how changes in the epiphyton phenology and the presence of grazing on epiphyton affects submerged macrophyte biomass in a generic temperate shallow model lake under control and warm winter scenarios. The results from the model provide a proof‐of‐concept that epiphyton shading can provoke macrophyte loss and shifts between alternative equilibria. Threshold values for critical shifts depend on epiphyton shading phenology. Earlier onset and longer duration of grazing can maintain macrophytes in nutrient or climate conditions under which they would otherwise collapse. Our results show the pivotal importance of epiphyton phenology in determining lake ecosystem‐wide responses stressing the need for better incorporation of epiphyton into both models and monitoring.
期刊介绍:
Limnology and Oceanography (L&O; print ISSN 0024-3590, online ISSN 1939-5590) publishes original articles, including scholarly reviews, about all aspects of limnology and oceanography. The journal''s unifying theme is the understanding of aquatic systems. Submissions are judged on the originality of their data, interpretations, and ideas, and on the degree to which they can be generalized beyond the particular aquatic system examined. Laboratory and modeling studies must demonstrate relevance to field environments; typically this means that they are bolstered by substantial "real-world" data. Few purely theoretical or purely empirical papers are accepted for review.