Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria

IF 12.9 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
Ashleigh Kropp, David L. Gillett, Hari Venugopal, Miguel A. Gonzálvez, James P. Lingford, Surbhi Jain, Christopher K. Barlow, Jie Zhang, Chris Greening, Rhys Grinter
{"title":"Quinone extraction drives atmospheric carbon monoxide oxidation in bacteria","authors":"Ashleigh Kropp, David L. Gillett, Hari Venugopal, Miguel A. Gonzálvez, James P. Lingford, Surbhi Jain, Christopher K. Barlow, Jie Zhang, Chris Greening, Rhys Grinter","doi":"10.1038/s41589-025-01836-0","DOIUrl":null,"url":null,"abstract":"<p>Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain. Here, we use cryo-electron microscopy and structural modeling to show how Mo-CODH<sub>Ms</sub> (CoxSML) from <i>Mycobacterium smegmatis</i> interacts with its partner, the membrane-bound menaquinone-binding protein CoxG. We provide electrochemical, biochemical and genetic evidence that Mo-CODH transfers CO-derived electrons to the aerobic respiratory chain through CoxG. Lastly, we show that Mo-CODH and CoxG genetically and structurally associate in diverse bacteria and archaea. These findings reveal the basis of the biogeochemically and ecologically important process of atmospheric CO oxidation, while demonstrating that long-range quinone transport is a general mechanism of energy conservation, which convergently evolved on multiple occasions.</p><figure></figure>","PeriodicalId":18832,"journal":{"name":"Nature chemical biology","volume":"52 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature chemical biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41589-025-01836-0","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Diverse bacteria and archaea use atmospheric CO as an energy source for long-term survival. Bacteria use [MoCu]-CO dehydrogenases (Mo-CODH) to convert atmospheric CO to carbon dioxide, transferring the obtained electrons to the aerobic respiratory chain. However, it is unknown how these enzymes oxidize CO at low concentrations and interact with the respiratory chain. Here, we use cryo-electron microscopy and structural modeling to show how Mo-CODHMs (CoxSML) from Mycobacterium smegmatis interacts with its partner, the membrane-bound menaquinone-binding protein CoxG. We provide electrochemical, biochemical and genetic evidence that Mo-CODH transfers CO-derived electrons to the aerobic respiratory chain through CoxG. Lastly, we show that Mo-CODH and CoxG genetically and structurally associate in diverse bacteria and archaea. These findings reveal the basis of the biogeochemically and ecologically important process of atmospheric CO oxidation, while demonstrating that long-range quinone transport is a general mechanism of energy conservation, which convergently evolved on multiple occasions.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature chemical biology
Nature chemical biology 生物-生化与分子生物学
CiteScore
23.90
自引率
1.40%
发文量
238
审稿时长
12 months
期刊介绍: Nature Chemical Biology stands as an esteemed international monthly journal, offering a prominent platform for the chemical biology community to showcase top-tier original research and commentary. Operating at the crossroads of chemistry, biology, and related disciplines, chemical biology utilizes scientific ideas and approaches to comprehend and manipulate biological systems with molecular precision. The journal embraces contributions from the growing community of chemical biologists, encompassing insights from chemists applying principles and tools to biological inquiries and biologists striving to comprehend and control molecular-level biological processes. We prioritize studies unveiling significant conceptual or practical advancements in areas where chemistry and biology intersect, emphasizing basic research, especially those reporting novel chemical or biological tools and offering profound molecular-level insights into underlying biological mechanisms. Nature Chemical Biology also welcomes manuscripts describing applied molecular studies at the chemistry-biology interface due to the broad utility of chemical biology approaches in manipulating or engineering biological systems. Irrespective of scientific focus, we actively seek submissions that creatively blend chemistry and biology, particularly those providing substantial conceptual or methodological breakthroughs with the potential to open innovative research avenues. The journal maintains a robust and impartial review process, emphasizing thorough chemical and biological characterization.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信