First-in-human experience performing high-resolution cortical mapping using a novel microelectrode array containing 1024 electrodes.

Peter Konrad, Kate R Gelman, Jesse Lawrence, Sanjay Bhatia, Dister Jacqueline, Radhey Sharma, Elton Ho, Yoon Woo Byun, Craig H Mermel, Benjamin I Rapoport
{"title":"First-in-human experience performing high-resolution cortical mapping using a novel microelectrode array containing 1024 electrodes.","authors":"Peter Konrad, Kate R Gelman, Jesse Lawrence, Sanjay Bhatia, Dister Jacqueline, Radhey Sharma, Elton Ho, Yoon Woo Byun, Craig H Mermel, Benjamin I Rapoport","doi":"10.1088/1741-2552/adaeed","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function. Furthermore, functional regions do not always correspond to identifiable structural features. Understanding function at the level of individual patients-and diagnosing and treating such patients-often requires techniques capable of correlating neural activity with cognition, behavior, and experience in anatomically precise ways.<i>Approach</i>. Recent advances in brain-computer interface technology have given rise to a new generation of electrophysiologic tools for scalable, nondestructive functional mapping with spatial precision in the range of tens to hundreds of micrometers, and temporal resolutions in the range of tens to hundreds of microseconds. Here we describe our initial intraoperative experience with novel, thin-film arrays containing 1024 surface microelectrodes for electrocorticographic mapping in a first-in-human study.<i>Main results</i>. Eight patients undergoing standard electrophysiologic cortical mapping during resection of eloquent-region brain tumors consented to brief sessions of concurrent mapping (micro-electrocorticography) using the novel arrays. Four patients underwent motor mapping using somatosensory evoked potentials (SSEPs) while under general anesthesia, and four underwent awake language mapping, using both standard paradigms and the novel microelectrode array. SSEP phase reversal was identified in the region predicted by conventional mapping, but at higher resolution (0.4 mm) and as a contour rather than as a point. In Broca's area (confirmed by direct cortical stimulation), speech planning was apparent in the micro-electrocorticogram as high-amplitude beta-band activity immediately prior to the articulatory event.<i>Significance</i>. These findings support the feasibility and potential clinical utility of incorporating micro-electrocorticography into the intraoperative workflow for systematic cortical mapping of functional brain regions.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adaeed","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.Localization of function within the brain and central nervous system is an essential aspect of clinical neuroscience. Classical descriptions of functional neuroanatomy provide a foundation for understanding the functional significance of identifiable anatomic structures. However, individuals exhibit substantial variation, particularly in the presence of disorders that alter tissue structure or impact function. Furthermore, functional regions do not always correspond to identifiable structural features. Understanding function at the level of individual patients-and diagnosing and treating such patients-often requires techniques capable of correlating neural activity with cognition, behavior, and experience in anatomically precise ways.Approach. Recent advances in brain-computer interface technology have given rise to a new generation of electrophysiologic tools for scalable, nondestructive functional mapping with spatial precision in the range of tens to hundreds of micrometers, and temporal resolutions in the range of tens to hundreds of microseconds. Here we describe our initial intraoperative experience with novel, thin-film arrays containing 1024 surface microelectrodes for electrocorticographic mapping in a first-in-human study.Main results. Eight patients undergoing standard electrophysiologic cortical mapping during resection of eloquent-region brain tumors consented to brief sessions of concurrent mapping (micro-electrocorticography) using the novel arrays. Four patients underwent motor mapping using somatosensory evoked potentials (SSEPs) while under general anesthesia, and four underwent awake language mapping, using both standard paradigms and the novel microelectrode array. SSEP phase reversal was identified in the region predicted by conventional mapping, but at higher resolution (0.4 mm) and as a contour rather than as a point. In Broca's area (confirmed by direct cortical stimulation), speech planning was apparent in the micro-electrocorticogram as high-amplitude beta-band activity immediately prior to the articulatory event.Significance. These findings support the feasibility and potential clinical utility of incorporating micro-electrocorticography into the intraoperative workflow for systematic cortical mapping of functional brain regions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信